Skip to main content
Log in

One-step preparation of antimicrobial silver nanoparticles in polymer matrix

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV–Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhter SA, Barry BW (1985) Absorption through human skin of ibuprofen and flurbiprofen; effect of dose variation, deposited drug films, occlusion and the penetration enhancer N-methyl-2-pyrrolidone. J Pharm Pharmacol 37:27–37

    Article  Google Scholar 

  • Aymonier C et al (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Comm 24:3018–3019. doi:10.1039/B208575E

    Article  Google Scholar 

  • Behrens S et al (2006) Assembly of nanoparticle ring structures based on protein templates. Adv Mater 18:284–289. doi:10.1002/adma.200501096

    Article  Google Scholar 

  • Burkowska-But A, Sionkowski G, Walczak M (2014) Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci 26:542–549. doi:10.1016/S1001-0742(13)60451-9

    Article  Google Scholar 

  • Cheng YJ et al (2011) In situ formation of silver nanoparticles in photocrosslinking polymers. J Biomed Mater Res, Part B 97B:124–131. doi:10.1002/jbm.b.31793

    Article  Google Scholar 

  • Cheviron P, Gouanve F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298. doi:10.1016/j.carbpol

    Article  Google Scholar 

  • Chudasama B et al (2010) Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J Nanopart Res 12:1677–1685. doi:10.1007/s11051-009-9845-1

    Article  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Coll Interf Sci 166:119–135. doi:10.1016/j.cis.2011.05.008

    Google Scholar 

  • Damm C, Munstedt H (2008) Kinetic aspects of the silver ion release from antimicrobial polyamide/silver nanocomposites. Appl Phys A 91:479–486. doi:10.1007/s00339-008-4434-1

    Article  Google Scholar 

  • Fanta GF et al (2013) Preparation of starch-stabilized silver nanoparticles from amylose–sodium palmitate inclusion complexes. Carbohydr Polym 92:260–268. doi:10.1016/j.carbpol.2012.09.016

    Article  Google Scholar 

  • Fei X et al (2013) Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules 14:4483–4488. doi:10.1021/bm4014149

    Article  Google Scholar 

  • Frolov AI et al (2012) Molecular mechanisms of salt effects on carbon nanotube dispersions in an organic solvent (N-methyl-2-pyrrolidone). Chem Sci 3:541–548. doi:10.1039/C1SC00232E

    Article  Google Scholar 

  • Giordani S et al (2006) Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J Phys Chem B 110:15708–15718. doi:10.1021/jp0626216

    Article  Google Scholar 

  • Grubbs RB (2005) Hybrid metal-polymer composites from functional block copolymers. J Polym Sci A 43:4323–4336. doi:10.1002/pola.20946

    Article  Google Scholar 

  • Ho CH et al (2004) Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 16:957–961. doi:10.1002/adma.200306253

    Article  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90:59–63. doi:10.1002/bit.20368

    Article  Google Scholar 

  • Jeon S-H et al (2009) Understanding and controlled growth of silver nanoparticles using oxidized N-methyl-pyrrolidone as a reducing agent. J Phys Chem C 114:36–40. doi:10.1021/jp907757u

    Article  Google Scholar 

  • Jewrajka SK, Chatterjee U (2006) Block copolymer mediated synthesis of amphiphilic gold-nanoparticles in water and an aqueous tetrahydrofuran medium: an approach for the preparation of polymer–gold nanocomposites. J Polym Sci A 44:1841–1854. doi:10.1002/pola.21293

    Article  Google Scholar 

  • Jin R-H, Yuan JJ (2005) Fabrication of silver porous frameworks using poly(ethyleneimine) hydrogel as a soft sacrificial template. J Mater Chem 15:4513–4517. doi:10.1039/B507125A

    Article  Google Scholar 

  • Jou JH, Chang YL, Liu CH (1992) Effects of imide structure/thickness/curing on solvent diffusions in polyimides. Macromolecules 25:5186–5191. doi:10.1021/ma00046a012

    Article  Google Scholar 

  • Kim MH (2013) Synthesis of silver nanoplates with controlled shapes by reducing silver nitrate with poly(vinyl pyrrolidone) in N-methylpyrrolidone. Cryst Eng Comm 15:4660–4666. doi:10.1039/C3CE40096D

    Article  Google Scholar 

  • Kong H, Jang J (2008) Antibacterial properties of novel poly(methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24:2051–2056. doi:10.1021/la703085e

    Article  Google Scholar 

  • Kumar R, Münstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088. doi:10.1016/j.biomaterials.2004.05.030

    Article  Google Scholar 

  • Lim MH, Ast D (2000) Free-standing thin films containing hexagonally organized silver nanocrystals in a polymer matrix. Angew Chem 12:1102–1105

    Google Scholar 

  • Lyutakov O (2014) Polymethylmethacrylate doped with porphyrin and silver nanoparticles as light-activated antimicrobial material. RSC Adv 4:50624–50630. doi:10.1039/c4ra08385g

    Article  Google Scholar 

  • Lyutakov O et al (2008) Refractive index of polymethylmethacrylate oriented by fluid temperature under electrical field. J Mater Sci 19:1064–1068. doi:10.1007/s10854-007-9467-2

    Google Scholar 

  • Lyutakov O et al (2015) Silver release and antimicrobial properties of PMMA films doped with silver ions, nano-particles and complexes. Mater Sci Engin C 49:534–540. doi:10.1016/j.msec.2015.01.022

    Article  Google Scholar 

  • Manikandan D, Mohan S, Nair KGM (2003) Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors. Mater Res Bull 38:1545–1550. doi:10.1039/C3NR02798H

    Article  Google Scholar 

  • Marambio-Jones C, Hoek EM (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi:10.1007/s11051-010-9900-y

    Article  Google Scholar 

  • Melaiye A et al (2005) Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291. doi:10.1021/ja040226s

    Article  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330:377–445. doi:10.1002/andp.19083300302

    Article  Google Scholar 

  • Mohan YM et al (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27:1346–1354. doi:10.1002/marc.200600297

    Article  Google Scholar 

  • Naik RR (2004) Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv Funct Mater 14:25–30. doi:10.1002/adfm.200304501

    Article  Google Scholar 

  • Phu DV et al (2014) Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers. Nanoscale Res Lett 9:5–9. doi:10.1186/1556-276X-9-162

    Article  Google Scholar 

  • Qu RJ et al (2014) Preparation and property of polyurethane/nanosilver complex fibers. Appl Surf Sci 294:81–88. doi:10.1016/j.apsusc.2013.11.116

    Article  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi:10.1016/j.biotechadv.2008.09.002

    Article  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941. doi:10.1021/ja029267j

    Article  Google Scholar 

  • Sanchez-Valdes S (2014) Sonochemical deposition of silver nanoparticles on linear low density polyethylene/cyclo olefin copolymer blend films. Polym Bull 71:1611–1624. doi:10.1007/s00289-014-1144-z

    Article  Google Scholar 

  • Shameli K et al (2012) Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int J Mol Sci 13:6639–6650. doi:10.2147/IJN.S36786

    Article  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145:83–96. doi:10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  • Sioss JA, Keating CD (2005) Batch preparation of linear Au and Ag nanoparticle Chains via wet chemistry. Nano Lett 5:1779–1783. doi:10.1021/nl051370u

    Article  Google Scholar 

  • Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434. doi:10.1016/j.carbpol.2006.01.037

    Article  Google Scholar 

  • Sun X et al (2003) One-step synthesis and size control of dendrimer-protected gold nanoparticles: a heat-treatment-based strategy. Macromol Rapid Commun 24:1024–1028. doi:10.1002/marc.200300093

    Article  Google Scholar 

  • Svorcik V, Lyutakov O, Huttel I (2008) Thickness dependence of refractive index and optical gap of PMMA layers prepared under electrical field. J Mater Sci 19:363–367. doi:10.1007/s10854-007-9344-z

    Google Scholar 

  • Vukoje ID et al (2014) Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization. Mater Res Bull 49:434–439. doi:10.1016/j.materresbull.2013.09.029

    Article  Google Scholar 

  • Washio I et al (2006) Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv Mater 18:1745–1749. doi:10.1002/adma.200600675

    Article  Google Scholar 

  • Yoksan R, Chirachanchai S (2009) Silver nanoparticles dispersing in chitosan solution: preparation by gamma-rayirradiation and their antimicrobial activities. Mater Chem Phys 115:296–302. doi:10.1016/j.matchemphys

    Article  Google Scholar 

  • Zellers ET, Sulewski R (1993) ASTM F739 method for testing the permeation resistance of protective clothing materials: critical analysis with proposed changes in procedure and test cell design. Am Ind Hyg Assoc J 54:465–479. doi:10.1202/0002-8894

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Grant Agency of the Czech Republic (No. P108/12/G108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Lyutakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyutakov, O., Kalachyova, Y., Solovyev, A. et al. One-step preparation of antimicrobial silver nanoparticles in polymer matrix. J Nanopart Res 17, 120 (2015). https://doi.org/10.1007/s11051-015-2935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2935-3

Keywords

Navigation