Skip to main content
Log in

The Progress in Understanding the Mechanisms of Methanol and Formic Acid Electrooxidation on Platinum Group Metals (a Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The reactions of electrooxidation of methanol and formic acid pertain to the most important model electrocatalytic processes and are used in direct low-temperature fuel cells. The electrooxidation mechanisms of these substances were actively studied for many decades. Considerable progress in this field was achieved due to the combined use of electrochemical techniques, in situ IR spectroscopy, differential electrochemical mass spectrometry, isotope-kinetic method, ab initio calculations in terms of the density functional theory, and comparison with the results of gas-phase investigations. The fundamental role in understanding the mechanism of processes was played by measurements on single-crystal faces and surfaces with the known ratio of terraces, steps, and kinks. This allowed the information accumulated for catalysts formed by metal nanoparticles to be interpreted and the role of the structure and size factors in electrocatalysis to be revealed. Attention is focused on the nature of adsorbates and intermediates, the detailed reaction routes, the mechanism of possible slow stages, the pH effects, the roles of the nature of anions in acidic solutions and of the nature cations in alkaline solutions. The effect of the catalyst loading and the multistage character of electrooxidation processes on the efficiency of real fuel cells is noted. The mechanisms of Langmuir–Hinshelwood and Eley–Rideal are analyzed as applied to electrooxidation processes as well as certain peculiarities of CO adsorbate electrooxidation. The results on the mechanism of interaction between adsorbed oxygen and С1-compounds are discussed. The specific features of processes on bimetallic surfaces and the strategy for designing catalysts based on the views on the mechanism of processes, the control over the structure/ composition of the surface and its specific decoration with metal adatoms are considered. Certain topical research directions are formulated aimed at deeper understanding of the mechanisms of electrooxidation of C1-compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Electrocatalysis, Lipkowski, J. and Ross, P.N., New York: Wiley-VCH, 1998.

  2. Handbook of Fuel Cells. Fundamentals Technology and Applications. Vol. 2. Electrocatalysis, Vielstich, W., Lamm, A., and Gasteiger, H.A., (Eds.), Chichester: Wiley, 2003.

  3. Petrii, O.A., Podlovchenko, B.I., Frumkin, A.N., and Hira Lal, The behaviour of platinized-platinum and platinum-ruthenium electrodes in methanol solutions, J. Electroanal. Chem., 1965, vol. 10, p. 253.

    Google Scholar 

  4. Podlovchenko, B.I., Petrii, O.A., Frumkin, A.N., and Hira Lal, The behavior of a platinized-platinum electrode in solutions of alcohols containing more than one carbon atom, aldehydes and formic acid, J. Electroanal. Chem., 1966, vol. 11, p. 12.

    CAS  Google Scholar 

  5. Bagotzky, V.S., Vassiliev, Yu.B., and Khazova, O.A., Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals, J. Electroanal. Chem., 1977, vol. 81, p. 229.

    Article  Google Scholar 

  6. Bagotzky, V.S. and Vassilyev, Yu.B., Mechanism of electro-oxidation of methanol on the platinum electrode, Electrochim. Acta, 1967, vol. 12, p. 1323.

    Article  Google Scholar 

  7. Kazarinov, V.E., Tysyachnaya, G.Ya., and Andreev, V.N., On the reasons for the discrepancies in the data on methanol adsorption on platinum, J. Electroanal. Chem., 1975, vol. 65, p. 391.

    Article  CAS  Google Scholar 

  8. Problemy elektrokatalyza (Problems of electrocatalysis), Bagotzky, V.S. (Ed.), Moscow: Nauka, 1980.

  9. McNicol, B.D., Rand, D.A.J., and Williams, K.R., Direct methanol-air fuel cells for road transportation, J. Power Sources, 1999, vol. 83, p. 15.

    Article  CAS  Google Scholar 

  10. Lamy, C., Lima, A., LeRhun, V., Delima, F., Countanceau, C., and Leger, J.-M., Recent advances in the development of direct alcohol fuel cell (DAFC), J. Power Sources, 2002, vol. 105, p. 283.

    Article  CAS  Google Scholar 

  11. Yu, X.W. and Pickup, P.G., Recent advances in direct formic acid fuel cells (DFAFC), J. Power Sources, 2008, vol. 182, p. 124.

    Article  CAS  Google Scholar 

  12. Rees, N.V. and Compton, R.G., Sustainable energy: a review of formic acid electrochemical fuel cells, J. Solid-State Electrochem., 2011, vol. 15, p. 2095.

    Article  CAS  Google Scholar 

  13. An, L. and Chen, R., Direct formate fuel cells: A review, J. Power Sources, 2016, vol. 320, p. 127.

    Article  CAS  Google Scholar 

  14. Hampson, N.A., Willars, M.J., and McNicol, B.D., The methanol-air fuel cell: a selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes, J. Power Sources, 1979, vol. 4, p. 191.

    Article  CAS  Google Scholar 

  15. Lamy, C., Leger, J.M., Clavilier, J., and Parsons, R., Structural effects in electrocatalysis. A comparative study of the oxidation of CO, HCOOH and CH3OH on single crystal Pt electrodes, J. Electroanal.Chem., 1983, vol. 150. p. 71.

    Article  CAS  Google Scholar 

  16. Parsons, R. and VanderNoot, T., The oxidation of small organic molecules: A survey of recent fuel cell related research, J. Electroanal. Chem., 1988, vol. 257, p. 9.

    Article  CAS  Google Scholar 

  17. Beden, B., Leger, J.-M., and Lamy, C., Electrocatalytical oxidation of oxygenated aliphatic organic compounds at noble metal electrodes, in Modern Aspects of Electrochemistry, Vol. 22, Bockris, J.O’M., Conway, B.E., and White, R.E. (Eds.) New York: Plenum, 1992, p. 97.

    Google Scholar 

  18. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell, Catal. Today, 1997, vol. 38, p. 445.

    Article  CAS  Google Scholar 

  19. Wasmus, S. and Kuver, A., Methanol oxidation and direct methanol fuel cell, J. Electroanal.Chem., 1999, vol. 461, p. 14.

    Article  CAS  Google Scholar 

  20. Arico, A., Srinivasan, S., and Antonucci, V., DMFCs: From fundamental aspects to technology development, Fuel Cells, 2001, vol. 1, p. 133.

    Article  CAS  Google Scholar 

  21. Iwasita, T., Electrocatalysis of methanol oxidation, Electrochim. Acta, 2002, vol. 47, p. 3663.

    Article  CAS  Google Scholar 

  22. Markovic, N.M. and Ross Jr., P.N., Surface science studies of model fuel cell electrocatalysts, Surf. Sci. Rep., 2002, vol. 45, p. 117.

    Article  CAS  Google Scholar 

  23. Mayrhofer, K.J.J., Arenz, M., Blizanak, B., Stamenkovich, V., Ross, P.N., and Markovic, N.M., CO surface electrochemistry on Pt-nanoparticles: a selective review, Electrochim. Acta, 2005, vol. 50, p. 5144.

    Article  CAS  Google Scholar 

  24. Yu, E.H., Wang, X., Krewer, U., Li, L., and Scott, K., Direct oxidation alkaline fuel cells: from materials to systems, Energy Environ. Sci., 2012, vol. 5, p. 5668.

    Article  CAS  Google Scholar 

  25. Bartrom, A. and Haan, J., The direct formate fuel cell with alkaline anion exchange membrane, J. Power Sources, 2012, vol. 214, p. 68.

    Article  CAS  Google Scholar 

  26. Jiang, J. and Wieckowski, A., Prospective direct formate fuel cell, Electrochem. Commun., 2012, vol. 18, p. 41.

    Article  CAS  Google Scholar 

  27. Tolmachev, Yu.V. and Petrii, O.A., Pt–Ru electrocatalysts for fuel cells: developments in the last decade, J. Solid State Electrochem., 2017, vol. 21, p. 613.

    Article  CAS  Google Scholar 

  28. Cohen, J.L., Volpe, D.J., and Abruna, H.D., Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes, Phys. Chem. Chem. Phys., 2007, vol. 7, p. 49.

    Article  Google Scholar 

  29. Housmans, T.H.M. and Koper, M.T.M., Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study, J. Phys. Chem. B., 2003, vol. 107, p. 8557.

    Article  CAS  Google Scholar 

  30. Grozovski, V., Climent, V., Herrero, E., and Feliu, J.M., The role of the surface structure in the oxidation mechanism of methanol, J. Electroanal. Chem., 2011, vol. 662, p. 43.

    Article  CAS  Google Scholar 

  31. Clavilier, J., Pulsed linear sweep voltammetry with pulses of constant level in a potential scale, demanding condition in the study of platinum single crystal electrodes, J. Electroanal. Chem., 1987, vol. 236, p. 87.

    Article  Google Scholar 

  32. Xu, W., Lu, T., Liu, C., and Xing, W., Supplement of the theory of normal pulse voltammetry and its application to the kinetic study of methanol oxidation on a polycrystalline platinum electrode, J. Phys. Chem., 2005, vol. 109, p. 7872.

    Article  CAS  Google Scholar 

  33. Murthy, A. and Manthiram, A., Electrocatalytic oxidation of methanol to soluble products on polycrystalline platinum: Application of convolutive potential sweep voltammetry in the estimation of kinetic parameters, Electrochim. Acta, 2011, vol. 56, p. 6078.

    Article  CAS  Google Scholar 

  34. Okamoto, H., Kon, W., and Mukouyama, Y., Five current peaks in voltammograms for oxidation of formic acid, formaldehyde and methanol on platinum, J. Phys. Chem. B., 2005, vol. 109, p. 15659.

    Article  CAS  PubMed  Google Scholar 

  35. Chung, D.Y., Lee, K-J., and Sung, Y.-E., Methanol electrooxidation on the Pt surface: revisiting the cyclic voltammetry interpretation, J. Phys.Chem. C., 2016, vol. 120, p. 9028.

    Article  CAS  Google Scholar 

  36. Lee, Y.-W., Lee, J.-J., Kwak. D.-H., Hwang, E.-T., Jang, I.S., and Park, K.-W., Pd@Pt core-shell nanostructures for improved electrocatalytic activity in methanol oxidation reaction, Appl. Catal., B, 2015, vol. 179, p. 178.

    Article  CAS  Google Scholar 

  37. Hofstead-Duffy, A.M., Chen, O.J., Sun, S.G., and Tong, Y.J., Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to current ratio criterion, J. Mater. Chem., 2012, vol. 22, p. 5205.

    Article  CAS  Google Scholar 

  38. Vidakovich, T., Christov, M., and Sundmacher, K., Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode, J. Electroanal. Chem., 2005, vol. 580, p. 105.

    Article  CAS  Google Scholar 

  39. Petrii, O.A., Pt-Ru electrocatalysts for fuel cells: a representative review, J. Solid State Electrochem., 2008, vol. 12, p. 609.

    Article  CAS  Google Scholar 

  40. Bao, W.-Q., He, X.-D., Wang, Y., and He, J.-B., Diffusion-restriction electrodeposition of platinum on solid carbon paste for electrocatalytic oxidation of methanol, Catal.Today, 2016, vol. 264, p. 198.

    Article  CAS  Google Scholar 

  41. Piela, P., Fields, R., and Zelenay, P., Electrochemical impedance spectroscopy for direct methanol fuel cell diagnostics, J. Electrochem. Soc., 2006, vol. 153, p. A1902.

    Google Scholar 

  42. Bruckenstein, S. and Gadde, R.R., Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products, J. Am. Chem. Soc., 1971, vol. 93, p. 793.

    Article  CAS  Google Scholar 

  43. Wolter, O. and Heitbaum, J., Differential electrochemical mass spectrometry (DEMS)–a new method for the study of electrode processes, Ber. Bunsen-Ges., 1984, vol. 88, p. 2.

    Article  CAS  Google Scholar 

  44. Willsau, J., Wolter, O., and Heitbaum, J., On the nature of the adsorbate during methanol oxidation at platinum, J. Electroanal. Chem., 1985, vol. 185, p. 163.

    Article  CAS  Google Scholar 

  45. Hartung, T. and Baltruschat, H., Differential electrochemical mass spectrometry using smooth electrodes: adsorption and H/D-exchange reactions of benzene on Pt, Langmuir, vol. 6, p. 953.

  46. Wang, H., Loffler, T., and Baltruschat, H., Formation of intermediates during methanol oxidation: A quantitative DEMS study, J. Appl. Electrochem., 2001, vol. 31, p. 759.

    Article  CAS  Google Scholar 

  47. Wonders, A.H., Housmans, T.H.M., Rosca, V., and Koper, M.T.M. On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration, J. Appl. Electrochem., 2006, vol. 36, p. 1215.

    CAS  Google Scholar 

  48. Lu, J., Hua, X., and Long, Y.-T., Recent advances in real-time and in situ analysis of an electrode-electrolyte interface by mass spectrometry, Analyst, 2017, vol. 142, p. 691.

    Article  CAS  PubMed  Google Scholar 

  49. Willsau, J. and Heitbaum, J., Analysis of adsorbed intermediates and determination of surface potential shifts by DEMS, Electrochim. Acta, 1986, vol. 31, p. 943.

    Article  CAS  Google Scholar 

  50. Chen, Y.-X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetic isotope effects in complex reaction networks: formic acid electrooxidation, Chem., Phys. Chem., 2007, vol. 8. p. 380.

    Google Scholar 

  51. Jusys, Z. and Behm, R.J., DEMS analysis of small organic molecule electrooxidation: a high-temperature high-pressure DEMS study, ECS Trans., 2008, vol. 16, p. 1243.

    Article  CAS  Google Scholar 

  52. Baltruschat H., Differential electrochemical mass spectrometry, J. Am. Soc. Mass Specrom., 2004, vol. 15, p. 1693.

    Article  CAS  Google Scholar 

  53. Wang, H., Alden, L., DiSalvo, E.J., and Abruna, H.D., Electrocatalytic mechanism and kinetics of SOC oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3739.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, H., Rus, E., and Abruna, H.D., New doubleband-electrode channel flow differential electrochemical mass spectrometry cell: application for detecting product formation during methanol electrooxidation, Anal. Chem., 2010, vol. 82, p. 4319.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, W., Jusys, Z., and Behm, R.J., Complete quantitative online analysis of methanol electrooxidation products via electron impact and electrospray ionization mass spectrometry, Anal. Chem., 2012, vol. 84, p. 5479.

    Article  CAS  Google Scholar 

  56. Cheng, S., Wu, Q., Dewald, H.D., and Chen, H., Online monitoring of methanol electrooxidation reactions by ambient mass spectrometry, J. Am. Soc. Mass Spectrom., 2017, vol. 28, p. 1005.

    Article  CAS  PubMed  Google Scholar 

  57. Bewick, A., Beden, B., Lamy, C., and Kunimatzu, K., Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species, Electroanal. Chem., 1981, vol. 121, p. 343.

    Article  Google Scholar 

  58. Osawa, M., Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS), Bull. Chem. Soc. Jpn., 1997, vol. 70, p. 2861.

    Article  CAS  Google Scholar 

  59. Chen, W., Cai, J., Yang, J., Sartin, M.M., and Chen, Y.-X., The kinetics of methanol oxidation at a Pt film electrode, a combining mass and infrared spectroscopic study, J. Electroanal. Chem., 2017, vol. 800, p. 89

    Article  CAS  Google Scholar 

  60. Heinen, M., Chen, Y.X., Jusys, Z., and Behm, R.J., In situ ATR-FTIRS coupled with on-line DEMS under controlled mass transfer conditions–A novel tool for electrocatalytic reaction study, Electrochim. Acta, 2007, vol. 52, p. 5634.

    Article  CAS  Google Scholar 

  61. Pronkin, S. and Wandlowski, Th., ATR-SEIRAS approach to probe the reactivity of Pd-modified quasisingle crystal gold film electrodes, Surf. Sci., 2004, vol. 573, p. 109.

    Article  CAS  Google Scholar 

  62. Pronkin, S., Hara, M., and Wandlowski, T., Electrocatalytic properties of Au(111)-Pd quasi-single crystal film electrodes as probed by ATR-SEIRAS, Russ. J. Electrochem., 2006, vol. 42, p. 1177.

    Article  CAS  Google Scholar 

  63. Xu, Q., Pobelov, I.V., Wandlowski, T., and Kuzume, A., ATR-SEIRAS study of formic acid adsorption and oxidation on Rh modified Au(111-25 nm) film electrodes in 0.1M H2SO4, J. Electroanal. Chem., 2017, vol. 793, p. 70.

    Article  CAS  Google Scholar 

  64. Wain, A.J. and O’Connell, M.A., Surface-enhanced vibrational spectroscopy at electrochemical interfaces, Adv. Phys.: X, 2017, vol. 2, p. 188.

    CAS  Google Scholar 

  65. Lazorenko–Manevich, R.M., Adatom hypothesis as a predominant mechanism of surface enhanced Raman scattering: A review of experimental argumentation, Russ. J. Electrochem., 2005, vol. 41, p. 799.

    Article  CAS  Google Scholar 

  66. Wu, D.-Y., Li, J.-F., Ren, B., and Tian, Z.-Q., Electrochemical surface-enhanced Raman spectroscopy of nanostructures, Chem. Soc. Rev., 2008, vol. 37, p. 1025.

    Article  CAS  PubMed  Google Scholar 

  67. Leung, L.-W.H. and Weaver, M.J., Extending surfaceenhanced Raman spectroscopy to transition-metal interfaces: carbon monoxide adsorption and electrooxidation on platinum-and palladium-coated gold electrodes, J. Am. Chem. Soc., 1987, vol. 109, p. 5113.

    Article  CAS  Google Scholar 

  68. Zou, S. and Weaver, M.J., Surface-enhanced scattering in uniform transition-metal films: toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces, Anal. Chem., 1998, vol. 70, p. 2387.

    Article  CAS  PubMed  Google Scholar 

  69. Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerscaan, R., and Tian, Z.-Q., Core-shell nanoparticle-enhanced Raman spectroscopy, Chem. Rev., 2017, vol. 117, p. 5002.

    Article  CAS  PubMed  Google Scholar 

  70. Jeong, H. and Kim, J., Insights into the electrooxidation mechanism of formic acid on Pt layers on Au examined by electrochemical SERS, J. Phys. Chem. C., 2016, vol. 120, p. 24271.

    Article  CAS  Google Scholar 

  71. Stamenkovich, V., Chou, K.C., Somorjai, G.A., Ross, P.N., and Markovic, N.M., Vibrational properties of CO at the Pt(111)-solution interface: The anomalous Stark-tuning slope, J. Phys. Chem. B., 2005, vol. 109, p. 678.

    Article  CAS  Google Scholar 

  72. Zhang, P., Wei, Y., Cai, J., Chen, Y.-X., and Tian, Z.-Q., Nonlinear Stark effect observed for carbon monoxide chemisorbed on gold core/palladium shell nanoparticles film electrodes, using in situ surface-enhanced Raman spectroscopy, Chin. J. Catal., 2016, vol. 37, p. 1156.

    Article  CAS  Google Scholar 

  73. Beltramo, G.L., Shubina, T.E., and Koper, M.T.M., Oxidation of formic acid and carbon monoxide on gold electrodes studied by surface-enhanced Raman spectroscopy and DFT, Chem., Phys. Chem., 2005, vol. 6, p. 2597.

    Article  CAS  Google Scholar 

  74. Loupe, M., Dean, J., and Smotkin, E.S., Twenty years of operando IR, X-ray absorption and Raman spectroscopy: direct methanol and hydrogen fuel cell, Catal. Today, 2017, vol. 283, p. 11.

    CAS  Google Scholar 

  75. Behrens, R.L., Lagutchev, A., Dlott, D.D., and Wieckowski, A., Broad-band sum frequency generation study of formic acid chemisorptions on Pt(100) electrode, J. Electroanal. Chem., 2010, vol. 649, p. 32.

    Article  CAS  Google Scholar 

  76. Tong, Y., Cai, K., Wolf, M., and Campen, R.K., Probing the electrooxidation of weakly adsorbed formic acid on Pt(100), Catal. Today, 2016, vol. 260, p. 66.

    Article  CAS  Google Scholar 

  77. Lai, S.C.S., Lebedeva, N.P., Housmans, T.H.M., and Koper, M.T.M., Mechanism of carbon monoxide and methanol oxidation at single-crystal electrodes, Top. Catal., 2007, vol. 46, p. 320.

    Article  CAS  Google Scholar 

  78. Kua, J. and Goddard III, W.A. Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells, J. Am. Chem. Soc., 1999, vol. 121, p. 10928.

    CAS  Google Scholar 

  79. Ishikawa, Y., Liao, M.-S., and Cabrera, C.R., Oxidation of methanol on platinum, ruthenium and mixed Pt–M metals (M = Ru, Sn): a theoretical study, Surf. Sci., 2000, vol. 463, p. 66.

    CAS  Google Scholar 

  80. Desai, S.K., Neurock, M., and Kourtakis, K., A periodic density functional theory study of the dehydrogenation of methanol over Pt(111), J. Phys. Chem. B, 2002, vol. 106, p. 2559.

    Article  CAS  Google Scholar 

  81. Okamoto, Y., Sugino, O., Mochizuki, Y., Ikeshoji, T., and Morikawa, Y., Comparative study of dehydrogenation of methanol at Pt(111)/water and Pt(111)/vacuum interfaces, Chem. Phys. Lett., 2003, vol. 377, p. 236.

    Article  CAS  Google Scholar 

  82. Greely, J. and Mavrikakis, M., Competitive paths for methanol decomposition on Pt(111), J. Am. Chem. Soc., 2004, vol. 126, p. 3910.

    Article  CAS  Google Scholar 

  83. Shubina, T.E., Hartnig, C., and Koper, M.T.M., Density functional theory study of the oxidation of CO by OH on Au(110) and Pt(111) surfaces, Phys. Chem. Chem. Phys., 2004, vol. 6, p. 4215.

    Article  CAS  Google Scholar 

  84. Cao, D., Lu, G.Q., Wieckowski, A., Wasileski, S.A., and Neurock, M., Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach, J. Phys. Chem. B, 2005, vol. 109, p. 11622.

    Article  CAS  PubMed  Google Scholar 

  85. Hartnig, C. and Spohr, E., The role of water in the initial steps of methanol oxidation on Pt(111), Chem. Phys., 2005, vol. 319, p. 185.

    Article  CAS  Google Scholar 

  86. Kandoi, S., Greeley, J., Sanchez-Castillo, M.A., Evans, S.T., Gonhale, A.A., Dumesic, J.A., and Mavrikakis, M., Prediction of experimental methanol decomposition rates on platinum from first principles, Top. Catal., 2006, vol. 37, p. 17.

    Article  CAS  Google Scholar 

  87. Janik, M.J., Taylor, C.D., and Neurock, M., First principles analysis of the electrooxidation of methanol and carbon monoxide, Top. Catal., 2007, vol. 46, p. 306.

    Article  CAS  Google Scholar 

  88. Hartnig, C., Grimminger, J., and Spohr, E., The role of water in the initial steps of methanol oxidation on Pt(211), Electrochim. Acta, 2007, vol. 52, p. 2236.

    Article  CAS  Google Scholar 

  89. Hartnig, C., Grimminger, J., and Spohr, E., Adsorption of formic acid on Pt(111) in the presence of water, J. Electroanal. Chem., 2007, vol. 607, p. 133.

    Article  CAS  Google Scholar 

  90. Ferrin, P., Njkelar, A.U., Greeley, J., Mavrikakis, M., and Rossmeisl, J., Reactivity descriptors for direct methanol fuel cell anode catalysts, Surf. Sci., 2008, vol. 602, p. 3424.

    Article  CAS  Google Scholar 

  91. Neurock, M., Janik, M., and Wieckowski, A., A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt, Faraday Discuss., 2008, vol. 140, p. 363.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, H.-F. and Liu, Z.-P., Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solution model, J. Phys. Chem. C, 2009, vol. 113, p. 17502.

    Article  CAS  Google Scholar 

  93. Ferrin, P. and Mavrikakis, M., Structure sensitivity of methanol electrooxidation on transition metals, J. Am. Chem. Soc., 2009, vol. 131, p. 14381.

    Article  CAS  PubMed  Google Scholar 

  94. Schnur, S. and Gross, A., Challenges in the first-principles description of reactions in electrocatalysis, Catal. Today, 2011, vol. 165, p. 129.

    Article  CAS  Google Scholar 

  95. Rossmeisl, J., Ferrin, P., Tritsaris, G.A., Nilekar, A.U., Koh, S., Bai, S.E., Brankovic, S.R., Strasser, P., and Mavrikakis, M. Bifunctional anode catalysts for direct methanol fuel cell, Energy Environ. Sci., 2012, vol. 5, p. 8335.

    CAS  Google Scholar 

  96. Zhong, W., Wang, R., Zhang, D., and Liu, C., Theoretical study of the oxidation of formic acid on the PtAu(111) surface in the continuum water solution phase, J. Phys. Chem. C, 2012, vol. 116, p. 24143.

    Article  CAS  Google Scholar 

  97. Luo, Q., Beller, M., and Jiao, H., Formic acid dehydrogenation on surfaces–A review of computational aspect, J. Theor. Comput. Chem., 2013, vol. 12, p. 1330001.

    Article  CAS  Google Scholar 

  98. Miller, A.V., Kaichev, V.V. Prosvirin, I.P., and Bukhtiyarov, V.I., Mechanistic study of methanol decomposition and oxidation on Pt(111), J. Phys. Chem. C, 2013, vol. 117, p. 8189.

    Article  CAS  Google Scholar 

  99. Braunchweig, B., Hibbitts, D., Neurock, M., and Wieckowski, A., Electrocatalysis: a direct alcohol fuel cell and surface science perspective, Catal. Today, 2013, vol. 202, p. 197.

    Article  CAS  Google Scholar 

  100. Anderson, A.B. and Asiri, H.A., Reversible potentials for steps in methanol and formic acid oxidation and CO2 reduction, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 10587.

    Article  CAS  PubMed  Google Scholar 

  101. Scaranto, J. and Mavrikakis, M., Density functional theory studies of HCOOH decomposition on Pd(111), Surf. Sci., 2015, vol. 650, p. 111.

    Article  CAS  Google Scholar 

  102. Wang, X., Chen, L., and Li, B., A density functional theory study of methanol dehydrogenation on the PtPd3(111) surface, Int. J. Hydrogen Energy, 2015, vol. 40, p. 9656.

    Article  CAS  Google Scholar 

  103. Zhong, W., Qi, Y., and Dong. M., The ensemble effect of formic acid oxidation on platinum-gold electrode studied by first-principles calculations, J. Power Sources, 2015, vol. 278, p. 203.

    Article  CAS  Google Scholar 

  104. Fang Y.-H. and Liu. Z.-P., Tafel kinetics of electrocatalytic reactions: from experiment to first principles, ACS Catal., 2014, vol. 4, p. 4364.

    Article  CAS  Google Scholar 

  105. Ding, Q., Xu, W., Sang, P., Xu, J., Zhao, L., Xe, X., and Guo, W., Insight into reaction mechanisms of methanol on PtRu/Pt(111): a density functional study, Appl. Surf. Sci., 2016, vol. 369, p. 257.

    Article  CAS  Google Scholar 

  106. Gasper, R.J. and Ramasubramamian, A., Density functional theory studies of methanol decomposition reaction on graphene-supported Pt13 nanoclusters, J. Phys. Chem. C, 2016, vol. 120, p. 17498.

    Article  CAS  Google Scholar 

  107. Fang, Y.-H. and Liu, Z.-P., First principles Tafel kinetics of methanol oxidation on Pt(111), Surf. Sci., 2016, vol. 631, p. 42.

    Article  CAS  Google Scholar 

  108. Scaranto, J. and Mavrikakis, M., HCOOH decomposition on Pt(111): A DFT study, Surf. Sci., 2016, vol. 648, p. 201.

    Article  CAS  Google Scholar 

  109. Sakong, S. and Gross, A., The importance of the electrochemical environmental in the electrooxidation of methanol on Pt(111), ACS Catal., 2016, vol. 6, p. 5574.

    Article  CAS  Google Scholar 

  110. Wang, Q,-Y. and Ding, Y.-H., Mechanism of methanol oxidation on graphene-supported Pt: Defect is better or not?, Electrochim. Acta, 2016, vol. 216, p. 140.

    Article  CAS  Google Scholar 

  111. Sakong, S. and Gross, A., Methanol oxidation on Pt(111) from first-principles in heterogeneous and electrocatalysis, Electrocatalysis, 2017, vol. 8, p. 577.

    Article  CAS  Google Scholar 

  112. Ou, L. and Huang, J., DFT-based study in the optimal CH3OH decomposition pathways in aqueous-phase: Homolysis versus heterolysis, Chem. Phys. Lett., 2017, vol. 679, p. 66.

    Article  CAS  Google Scholar 

  113. Du, P., Wu, P., and Cai, C., Mechanism of methanol decomposition on the Pt3Ni surface: DFT study, J. Phys. Chem. C, 2017, vol. 127, p. 9348.

    Article  CAS  Google Scholar 

  114. Park, S., Xie, Y., and Weaver, M., Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid and formaldehyde electrooxidation, Langmuir, 2002, vol. 18, p. 5792.

    Article  CAS  Google Scholar 

  115. Breiter, M.W., A study of intermediates adsorbed on platinized platinum during the steady-state oxidation of methanol, formic acid and formaldehyde, J. Electroanal. Chem., 1967, vol. 14, p. 407.

    Article  CAS  Google Scholar 

  116. Breiter, M.W., Role of adsorbed species for the anodic methanol oxidation on platinum in acidic electrolytes, Discuss. Faraday Soc., 1968, vol. 45, p. 79.

    Article  Google Scholar 

  117. Housmans, T.H.M., Wanders, A.H., and Koper, M.T.M., Structure sensitivity of methanol electrooxidation pathways on platinum: an on-line electrochemical mass spectrometry study, J. Phys. Chem. B, 2006, vol. 110, p. 10021.

    Article  CAS  PubMed  Google Scholar 

  118. Chen, Y.X., Miki, A., Ye, S., Sakai, H., and Osawa, M., Formate, an active intermediate for direct oxidation of methanol on Pt electrode, J. Am. Chem. Soc., 2003, vol. 125, p. 3680.

    Article  CAS  PubMed  Google Scholar 

  119. Cuesta, A., At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum, J. Am. Chem. Soc., 2006, vol. 128, p. 13332.

    Article  CAS  PubMed  Google Scholar 

  120. Cuesta, A., Escudero, M., Lanova, B., and Baltruschat, H., Cyclic voltammetry, FTIRS, and DEMS study of the electrooxidation of carbon monoxide, formic acid, and methanol on cyanide-modified Pt(111) electrodes, Langmuir, 2009, vol. 25, p. 6500.

    CAS  PubMed  Google Scholar 

  121. Kunimatsu, K., Hanawa, N., Uchida, H., and Watanabe, M., Role of adsorbed species in methanol oxidation on Pt studied by ATR-FTIRAS combined with linear potential sweep voltammetry, J. Electroanal. Chem., 2009, vol. 632, p. 109.

    Article  CAS  Google Scholar 

  122. Franaszsczuk K., Herrero E., Zelenay P., Wieckowski A., Wang J., and Masel R.I., A comparison of electrochemical and gas-phase decomposition of methanol on platinum surfaces, J. Phys. Chem. B, 1992, vol. 96, p. 8509.

    Article  Google Scholar 

  123. Lebedeva, N.P., Koper, M.T.M., Feliu, J.M., and van Santen, R.A., Mechanism and kinetic of the electrochemical CO adlayer oxidation on Pt(111), J. Electroanal. Chem., 2002, vol. 524–525, p. 242.

    Google Scholar 

  124. Sriramulu, S., Jarvi, T.D., and Stuve, E.M., Reaction mechanism and dynamics of methanol electrooxidation on platinum (111), J. Electroanal. Chem., 1999, vol. 467, p. 132.

    Article  CAS  Google Scholar 

  125. Batista, E.A., Malpass, G.R.P., Motheo, A.J., and Iwasita, T., New mechanistic aspects of methanol oxidation, J. Electroanal. Chem., 2004, vol. 571, p. 273.

    Article  CAS  Google Scholar 

  126. Wang, H. and Baltruschat, H., DEMS study on methanol oxidation at poly-and monocrystalline platinum electrodes: the effects of anion, temperature, surface structure, Ru adatoms and potential, J. Phys. Chem. C, 2007, vol. 111, p. 7038.

    CAS  Google Scholar 

  127. Mostafa, E., Abd-El-Latif, A.A., and Baltruschat, H., Electrocatalytic oxidation and adsorption rate of methanol at Pt stepped single-crystal electrodes and effect of Ru step decoration: A DEMS study, Chem., Phys. Chem., 2014, vol. 15, p. 2029.

    Article  CAS  Google Scholar 

  128. Liao, L.W., Liu, S.X., Tao, Q., Geng, B., Zhang, P., Wang, C.M., Chen, Y.X., and Ye, S., A method for kinetic study of methanol oxidation on Pt electrode by electrochemical in situ infrared spectroscopy, J. Electroanal. Chem., 2010, vol. 650, p. 233.

    Article  CAS  Google Scholar 

  129. Liu, S.X., Liao, L.W., Tao, Q., Chen, Y.X., and Ye, S., The kinetics of CO pathway in methanol oxidation at Pt electrode, a quantitative study by ATR-FTIR spectroscopy, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 9725.

    Article  CAS  PubMed  Google Scholar 

  130. Tao, Q., Chen, W., Yao, Y., Yousaf, A.B., and Chen, Y.-X., Study of methanol oxidation at Pt and PtRu electrodes by combining in situ infrared spectroscopy and differential electrochemical mass spectrometry, Chin. J. Chem. Phys., 2014. doi 10.1063/1674-oo68/27/05/541-547

    Google Scholar 

  131. Reichert, R., Schnaidt, J., Jusys, Z., and Behm, R.J., The influence of reactive side products in electrocatalytic reactions: methanol oxidation as case study, Chem. Phys. Chem., 2013, vol. 14, p. 3678.

    Article  CAS  PubMed  Google Scholar 

  132. Reichert, R., Schnaidt, J., Jusys, Z., and Behm, R.J., The influence of reactive side products on the electrooxidation of methanol—a combined in situ infrared spectroscopy and on line mass spectrometry study, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13780.

    Article  CAS  PubMed  Google Scholar 

  133. Seidel, Y.E., Schneider, A., Jusys, Z., Wiesman, B., Kasemo, B., and Behm, R.J., Mesoscopic mass transport effects in electrocatalytic processes, Faraday Discuss., 2008, vol. 140, p. 167.

    Article  CAS  PubMed  Google Scholar 

  134. Majidi, P., Altarawnef, R.M., Ryan, N.D.W., and Pickup, P.G., Determination of the efficiency of methanol oxidation in a direct methanol fuel cell, Electrochim. Acta, 2016, vol. 199, p. 210.

    Article  CAS  Google Scholar 

  135. Iwasita, T. and Vielstich, W., On-line mass spectroscopy of volatile products during methanol oxidation at platinum in acid solutions, J. Electroanal. Chem., 1986, vol. 201, p. 403.

    Article  CAS  Google Scholar 

  136. Jusys, Z., Kaiser, J., and Behm, R.J., Methanol electrooxidation over Pt/C fuel cell catalysts: dependence of products yields on catalyst loading, Langmuir, 2003, vol. 19, p. 6759.

    Article  CAS  Google Scholar 

  137. Abd-El-Latif, A.A. and Baltruschat, H., Formation of methylformate during methanol oxidation revisited: The mechanism, J. Electroanal. Chem., 2011, vol. 662, p. 204.

    Article  CAS  Google Scholar 

  138. Wang, H., Alden, L.R., DiSalvo, F.J., and Abruna, H.D., Methanol electrooxidation on PtRu bulk alloys and carbon-supported PtRu nanoparticle catalysts: A quantitative DEMS study, Langmuir, 2009, vol. 25, p. 7725.

    Article  CAS  PubMed  Google Scholar 

  139. Nakagawa, N., Sekimoto, K., Masdar, M.S., and Noda, R., Reaction analysis of a direct methanol fuel cell employing a porous carbon plate at high methanol concentrations, J. Power Sources, 2009, vol. 186, p. 45.

    Article  CAS  Google Scholar 

  140. Capon, A. and Parsons, R., The oxidation of formic acid at noble metal electrodes. Part III. Intermediates and mechanism on platinum electrodes, J. Electroanal. Chem., 1973, vol. 45, p. 205.

    Article  CAS  Google Scholar 

  141. Sun, S.G., Clavilier, J., and Bewick, A., The mechanism of electrocatalytic oxidation of formic acid on Pt(100) and Pt(111) in sulphuric acid solution: an EMIRS study, J. Electroanal. Chem., 1988, vol. 249, p. 147.

    Article  Google Scholar 

  142. Miki, A., Ye, S., and Osawa, M., Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions, Chem. Commun., 2002, p. 1500.

    Google Scholar 

  143. Miyake, H., Okada, T., Samjeske, G., and Osawa, M., Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3662.

    Article  CAS  PubMed  Google Scholar 

  144. Columbia, M.R. and Thiel, P.A., The interaction of formic acid with transition metal surfaces, studied in ultrahigh vacuum, J. Electroanal. Chem., 1994, vol. 369, p. 1.

    Article  CAS  Google Scholar 

  145. Samjeske, G. and Osawa, M., Current oscillations during formic acid oxidation on Pt electrode: insight into the mechanism by time-resolved IR spectroscopy, Angew. Chem., 2005, vol. 117, p. 5840.

    Article  Google Scholar 

  146. Samjeske, G., Miki, A., Ye, S., and Osawa, M., Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared spectroscopy, J. Phys. Chem. B, 2006, vol. 110, p. 16559.

    Article  CAS  PubMed  Google Scholar 

  147. Osawa, M., Komatsu, K., Samjeski, G., Uchida, T., Ikeshoji, T., Cuesta, A., and Gutierrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem., Int. Ed., 2011, vol. 50, p. 1159.

    Article  CAS  Google Scholar 

  148. Cuesta, A., Cabello, G. Gutierrez, C., and Osawa, M., Adsorbed formate: the key intermediate of the oxidation of formic acid on platinum electrodes, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 20091.

    Article  CAS  PubMed  Google Scholar 

  149. Cuesta, A., Cabello, G., Osawa, M., and Gutierrez, C., Mechanism of the electrocatalytic oxidation of formic acid on metals, ACS Catal., 2012, vol. 2, p. 728.

    Article  CAS  Google Scholar 

  150. Grozovski, V., Vidal-Iglesias, F.J., Herrero, E., and Feliu, J.M., Adsorption of formate and its role as intermediate in formic acid oxidation on platinum electrodes, Chem., Phys. Chem., 2011, vol. 12, p. 1641.

    Article  CAS  Google Scholar 

  151. Wieckowski, A. and Sobkowski, J., Comparative of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution, J. Electroanal. Chem., 1975, vol. 63, p. 365.

    Article  CAS  Google Scholar 

  152. Chen, Y., Heinen, M., Jusys, Z., and Behm, R., Kinetics and mechanism of the electrooxidation of formic acid–Spectroscopical study in a flow cell, Angew. Chem., Int. Ed., 2006, vol. 45, p. 981.

    Article  CAS  Google Scholar 

  153. Chen, Y.-X., Heinen, M., Jusys, Z., and Behm, R.J., Bridge-bonded formate: active intermediate or spectator species in formic acid oxidation on a Pt film electrode, Langmuir, 2006, vol. 22, p. 10399.

    Article  CAS  PubMed  Google Scholar 

  154. Chen, Y.X., Ye, S., Heinen, M., Jusys, Z., Osawa, M., and Behm, R.J., Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures, J. Phys. Chem. B, 2006, vol. 110, p. 9534.

    Article  CAS  PubMed  Google Scholar 

  155. Chen, Y.-X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetic isotope effects in complex reaction networks: formic acid electrooxidation, Chem., Phys. Chem., 2007, vol. 8, p. 380.

    Article  CAS  Google Scholar 

  156. Xu, J., Yuan, D.F., Yang, F., Mei, D., Zhang, Z., and Chen, Y.-X., On the mechanism of the direct path way formic acid oxidation at Pt(111) electrodes, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 4367.

    Article  CAS  PubMed  Google Scholar 

  157. Okamoto, H., Numata, Y., Gojuki, T., and Mukouyama, Y., Different behavior of adsorbed bridgebonded formate from that of current in the oxidation of formic acid on platinum, Electrochim. Acta, 2014, vol. 116, p. 263.

    Article  CAS  Google Scholar 

  158. Gao, W., Keith, J.A., Anton, J., and Jacob, T., Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111), J. Am. Chem. Soc., 2010, vol. 132, p. 18377.

    Article  CAS  PubMed  Google Scholar 

  159. Gao, W., Mueller, J.E., Jiang, Q., and Jacob, T., The role of co-adsorbed CO and OH in the electrooxidation of formic acid on Pt(111), Angew. Chem., Int. Ed., 2012, vol. 51, p. 9448.

    Article  CAS  Google Scholar 

  160. Joo, J., Uchida, T., Cuesta, A., Koper, M.T.M., and Osawa, M., Importance of acid-base equilibrium in electrocatalytic oxidation of formic acid on platinum, J. Am. Chem. Soc., 2012, vol. 135, p. 9991.

    Article  CAS  Google Scholar 

  161. Joo, J., Uchida, T., Cuesta, A., Koper, M.T.M., and Osawa, M., The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: A mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry, Electrochim. Acta, 2014, vol. 129, p. 127.

    Article  CAS  Google Scholar 

  162. Koper, M.T.M., Theory of multiple proton-electron transfer reactions and its implication to electrocatalysis, Chem. Sci., 2013, vol. 4, p. 2719.

    Article  CAS  Google Scholar 

  163. Mei, D., He, Z.D., Jiang, D.C., Cai, J., and Chen, Y.X., Modeling of potential oscillation during galvanostatic electrooxidation of formic acid at platinum electrode, J. Phys. Chem. C, 2014, vol. 118, p. 6335.

    Article  CAS  Google Scholar 

  164. Perales-Rondon, J.V., Herrero, E., and Feliu, J.M., Effects of the anion adsorption and pH on the formic acid oxidation reaction on Pt(111) electrodes, Electrochim. Acta, 2014, vol. 140, p. 511.

    Article  CAS  Google Scholar 

  165. Brimaud, S., Solla-Gullon, J., Weber, I., Feliu, J.M., and Behm, R.J., Formic acid electrooxidation on noble-metal electrodes: role and mechanistic implication of pH, surface structure, and anion adsorption, ChemElectroChem, 2014, vol. 1, p. 1075.

    Article  CAS  Google Scholar 

  166. Perales-Rondon, J.V., Brimaud, S., Solla-Gullon, J., Herrero, E., Behm, R.J., and Feliu, J.M., Further insights into the formic acid oxidation mechanism on platinum: pH and anion adsorption effects, Electrochim. Acta, 2015, vol. 180, p. 479.

    Article  CAS  Google Scholar 

  167. Jiang, K., Zhang, H.-X., Zou, S., and Cai, W.-B., Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20360.

    Article  CAS  PubMed  Google Scholar 

  168. Gao, W., Song, E.H., Jiang, Q., and Jacob, T., Revealing the active intermediate in the oxidation of formic acid on Au and Pt(111), Chem.-Eur. J., 2014, vol. 20, p. 11005.

    Article  CAS  PubMed  Google Scholar 

  169. Qi, Y.Y., Li, J.J., Zhang, D.J., and Liu, C.B., Reexamination of formic acid decomposition on the Pt(111) surface in the absence and in the presence of water, from periodic DFT calculations, Catal. Sci. Technol., 2015, vol. 5, p. 3322.

    Article  CAS  Google Scholar 

  170. Schwarz, K.A., Sundararaman, R., Moffat, T.P., and Allison, T.C., Formic acid oxidation on platinum: a simple mechanistic study, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 20805.

    Article  CAS  PubMed  Google Scholar 

  171. Cuesta, A., Cabello, G., Hartl, F.W., Escudero-Escriberro, M., Vaz-Dominguez, C., Kibler, L.A., Osawa, M., and Guttierrez, C., Electrooxidation of formic acid on gold: An ATR-SEIRAS study of the role of adsorbed formate, Catal. Today, 2013, vol. 202, p. 79.

    CAS  Google Scholar 

  172. McPherson, I.J., Ash, P.A., Jacobs, R.M.J., and Vincent, K.A., Formate adsorption on Pt nanoparticles during formic acid electrooxidation: Insights from in situ infrared spectroscopy, Chem. Commun., 2016, vol. 52, p. 12665.

    Article  CAS  Google Scholar 

  173. Christensen, P.A., Hamnett, A., and Linares-Moya, D.J., The electro-oxidation of formate ions at a polycrystalline Pt electrode in alkaline solution: an in situ FTIR study, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 11739.

    Article  CAS  PubMed  Google Scholar 

  174. John, J., Wang, H., Rus, E.D., and Abruna, H.D., Mechanistic studies of formate oxidation on platinum in alkaline medium, J. Phys. Chem. C, 2012, vol. 116, p. 5810.

    Article  CAS  Google Scholar 

  175. Jiang, J., Scott, J., and Wieckowski, A., Direct evidence of triple-path mechanism of formate electrooxidation on Pt black in alkaline media at varying temperature. Part I: The electrochemical studies, Electrochim. Acta, 2013, vol. 104, p. 124.

    Article  CAS  Google Scholar 

  176. Jusys, Z. and Behm, R.J., Dynamics of the interaction of formic acid with a polycrystalline Pt film electrode a time-resolved ATR-FTIR spectroscopy study at low potentials and temperatures, Electrocatalysis, 2017, vol. 8, p. 616.

    Article  CAS  Google Scholar 

  177. Uhm, S., Lee, H.J., and Lee, J., Understanding underlying processes in formic acid fuel cells, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 9326.

    Article  CAS  PubMed  Google Scholar 

  178. Yu, X. and Pickup, P.G., Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation, Electrochem. Commun., 2009, vol. 11, p. 2012.

    Article  CAS  Google Scholar 

  179. Wang, J.-Y., Zhang, H.-X., Jiang, K., and Cai, W.-B., From HCOOH to CO on Pd electrodes: A surfaceenhanced infrared spectroscopic study, J. Am. Chem. Soc., 2011, vol. 133, p. 14876.

    Article  CAS  PubMed  Google Scholar 

  180. Zhang, R.G., Liu, H.Y., Wang, B.J., and Ling, I.X., Insight into the preference of CO2 formation from HCOOH decomposition on Pd surface, J. Phys. Chem. C, 2012, vol. 116, p. 22266.

    Article  CAS  Google Scholar 

  181. Jeon, H., Jeong, B., Loo, J., and Lee, J., Electrocatalytic oxidation of formic acid: closing gap between fundamental study and technical applications, Electrocatalysis, 2015, vol. 6, p. 20.

    Article  CAS  Google Scholar 

  182. Wang, Y., Qi, Y., Zhang, D., and Liu, C., New insight into decomposition of formic acid on Pd(111): Competing formation of CO and CO2, J. Phys. Chem. C, 2014, vol. 118, p. 2067.

    Article  CAS  Google Scholar 

  183. Capon, A. and Parsons, R., The oxidation of formic acid on noble metal electrodes. II. A comparison of the behavior of pure electrodes, J. Electroanal. Chem., 1973, vol. 44, p. 239.

    Article  CAS  Google Scholar 

  184. Arenz, M., Stamenkovic, V., Schmidt, T.J., Wandelt, K., Ross, P.N., and Markovic, N.M., The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces, Phys. Chem. Phys. Chem., 2003, vol. 5, p. 4242.

    Article  CAS  Google Scholar 

  185. Zhang, H.X., Wang, S.H., Jiang, K., Andre, T., and Cai, W.B., In situ spectroscopic investigation of CO accumulation and poisoning on Pt black surfaces in concentrated HCOOH, J. Power Sources, 2012, vol. 199, p. 163.

    Google Scholar 

  186. Obradovic, M.D. and Gojkovic, S.Lj., HCOOH oxidation on thin Pd adlayers on Au: Self-poisoning by the subsequent reaction of the reaction product, Electrochim. Acta, 2013, vol. 88, p. 384

    Article  CAS  Google Scholar 

  187. Vidal-Iglesias, F.J., Aran-Aris, R.M., Solla-Gullon, J., Garnier, E., Herrero, E., Aldaz, A., and Feliu, J.M., Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 10258.

    Article  CAS  PubMed  Google Scholar 

  188. Obradovic, M.D. and Gojkovic, S.L., Pd black decorated by Pt sub-monolayers as an electrocatalyst for the HCOOH oxidation, J. Solid State Electrochem., 2014, vol. 18, p. 2599.

    Article  CAS  Google Scholar 

  189. Chen, X. and Koper, M.T.M., Mass-transport-limited oxidation of formic acid on Pd ML Pt(100) electrode in perchloric acid, Electrochem. Commun., 2017, vol. 82, p. 155.

    Article  CAS  Google Scholar 

  190. Haan, J.L. and Masel, R.T., The influence of solution pH on rates of an electrocatalytic reactions: Formic acid electrooxidation on platinum and palladium, Electrochim. Acta, 2009, vol. 54, p. 4073.

    Article  CAS  Google Scholar 

  191. Joo, J., Choun, N., Jeong, J., and Lee, J., Influence of solution pH on Pt anodic catalyst in direct formic acid fuel cells, ACS Catal., 2015, vol. 5, p. 6848.

    Article  CAS  Google Scholar 

  192. Abdelrahman, A., Hermann, J.M., and Kibler, L.A., Electrocatalytic oxidation of formate and formic acid on platinum and gold: study of pH dependence with phosphate buffers, Electrocatalysis, 2017, vol. 8, p. 509.

    Article  CAS  Google Scholar 

  193. Jiang, K., Wang, J.-Y., Zhao, T.-T., and Cai, W.-B., Formic acid oxidation on palladium electrode in acidic media containing chloride anions: An in situ ATRSEIRAS investigation, J. Electroanal. Chem., 2017, vol. 800, p. 77.

    CAS  Google Scholar 

  194. Wetzel, R., Günther, H., and Müller, L., A switch effect in the oxidation behavior of formate on Pt in alkaline solution, J. Electroanal. Chem., 1979, vol. 103, p. 271.

    Article  CAS  Google Scholar 

  195. Günther, H., Wetzel, R., and Müller, L., A new method for pH measurement in the immediate vicinity of the electrode surface, Electrochim. Acta, 1979, vol. 24, p. 237.

    Article  Google Scholar 

  196. Liao, L.W., Li, M.F., Kang, J., Chen, D., Chen, Y.-X., and Ye, S., Electrode reaction induced pH change at the Pt electrode/electrolyte interface and its impact on electrode processes, J. Electroanal. Chem., 2013, vol. 688, p. 207.

    Article  CAS  Google Scholar 

  197. Wei, Y., Zuo, K.Q., He, Z.D., Chen, W., Lin, C.H., Cai, J., Sartin, M., and Chen, Y.-X., The mechanisms of HCOOH/HCOO–oxidation on Pt electrodes: Implication from pH effect and H/D kinetic isotope effect, Electrochem. Commun., 2017, vol. 81, p. 1.

    Article  CAS  Google Scholar 

  198. Subbaraman, R., Danilovic, N., Lopes, P., Tripkovic, D., Strmcnik, D., Stamenkovic, V., and Markovic, N., Origin of anomalous activities for electrocatalysts in alkaline electrolytes, J. Phys. Chem. C, 2012, vol. 16, p. 22231.

    Article  CAS  Google Scholar 

  199. Strmcnik, D., Kodama, K., van der Vliet, D., Greely, J., Stamenkovic, V.B., and Markovic, N.M., The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum, Nat. Chem., 2009, vol. 1, p. 466.

    CAS  Google Scholar 

  200. Dunwell, M., Wang, J., Yan, Y., and Xu, B., Surface enhanced spectroscopic investigation of adsorption of cations on electrochemical surfaces, Phys. Chem. Chem. Phys., 2017, vol. 19, p. 971.

    Article  CAS  PubMed  Google Scholar 

  201. Previdello, B.A., Machado, E.G., and Varela, H., The effect of the alkali metal cation on the electrocatalytic oxidation of formate on platinum, RSC Adv., 2014, vol. 4, p. 15271.

    Article  CAS  Google Scholar 

  202. McCrum, I.T. and Janik, M.J., pH and alkali cation effects in the Pt cyclic voltammogram explained using density functional theory, J. Phys. Chem. C, 2016, vol. 120, p. 457.

    CAS  Google Scholar 

  203. Nagao, R., Epstein, I.R., Gonzalez, E.R., and Varela, H., Temperature (over)compensation in an oscillatory surface reaction, J. Phys. Chem. A, 2008, vol. 112, p. 4617.

    Article  CAS  PubMed  Google Scholar 

  204. Angelucci, C.A., Varela, H., Herrero, E., and Feliu, J.M., Activation energies of the electrooxidation of formic acid on Pt(100), J. Phys. Chem. C, 2009, vol. 113, p. 18835.

    Article  CAS  Google Scholar 

  205. Gilman, S., The mechanism of electrochemical oxidation of carbon monoxide on platinum. II. The “reactant pair” mechanism for electrochemical oxidation of carbon monoxide and methanol, J. Phys. Chem., 1964, vol. 68, p. 70.

    Article  CAS  Google Scholar 

  206. Garcia, G. and Koper, M.T.M., Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cell, Chem. Phys. Chem., 2011, vol. 12, p. 2064.

    Article  CAS  PubMed  Google Scholar 

  207. Herrero, E., Feliu, J.M., Bluis, S., Radovic-Hrapovic, Z., and Jerkiewicz, G., Temperature dependence of COchemisorptions and its oxidative desorption on Pt(111) electrode, Langmuir, 2000, vol. 16, p. 4779.

    Article  CAS  Google Scholar 

  208. Garcia, G. and Koper, M.T.M., Mechanism of electrooxidation of carbon monoxide on stepped platinum electrodes in alkaline media: A chronoamperometric and kinetic modeling study, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 11437.

    Article  CAS  PubMed  Google Scholar 

  209. Kunimatsu, K., Sato, T., Uchida, H., and Watanabe, M., Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-SEIRAS methods: Oxidation of CO adsorbed on carbon supported Pt catalyst and unsupported Pt black, Langmuir, 2008, vol. 24, p. 3590.

    Article  CAS  PubMed  Google Scholar 

  210. Samjeske, G., Komatsu, K., and Osawa, M., Dynamics of CO oxidation on a polycrystalline platinum electrode: a time-resolved infrared study, J. Phys. Chem. C, 2009, vol. 113, p. 10222.

    Article  CAS  Google Scholar 

  211. Zhu Y., Uchida H., and Watanabe M., Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique, Langmuir, 1999, vol. 15, p. 8757.

    Article  CAS  Google Scholar 

  212. Breiter, M.W., Adsorption and oxidation of carbon monoxide on platinized platinum, J. Phys. Chem., 1968, vol. 72, p. 1305

    Article  CAS  Google Scholar 

  213. Cuesta, A., The oxidation of adsorbed CO on Pt(100) electrodes in the pre-peak region, Electroanalysis, 2010, vol. 1, p. 7.

    CAS  Google Scholar 

  214. Cuesta, A., Electrooxidation of C1 organic molecules on Pt electrodes, Curr. Opin. Electrochem., 2017, vol. 4, p. 32.

    Article  CAS  Google Scholar 

  215. Strmcnik, D.S., Tripcovic, D.V., van der Vliet, D., Chang, K.-C., Kominicky, V., You, H., Karapetov, G., Greely, J.P., Stamenkovic, V.R., and Markovic, N.M., Unique activity of platinum adislands in the CO electrooxidation reaction, J. Am. Chem. Soc., 2008, vol. 130, p. 15332.

    CAS  Google Scholar 

  216. Farias, M.J.S., Camara, G.A., and Feliu, J.M., Understanding the CO preoxidation and the intrinsic catalytic activity of step sites on stepped Pt surfaces in acidic medium, J. Phys. Chem. C, 2015, vol. 119, p. 20272.

    Article  CAS  Google Scholar 

  217. Yan, Y.-G., Yang, Y.-Y.,Peng, B., Malkhandi, S., Band, A., Stimming, U., and Cai, W.-B., Study of CO oxidation on polycrystalline Pt electrodes in acidic solution by ATR-SEIRAS, J. Phys. Chem. C, 2011, vol. 115, p. 16378.

    CAS  Google Scholar 

  218. Brimaud, S., Pronier, S., Coutanceau, C., and Leger, J.M., New insights on CO electrooxidation at Pt nanoparticle surfaces, Electrochem. Commun., 2008, vol. 10, p. 1703.

    Article  CAS  Google Scholar 

  219. Urchaga, P., Baranton, S., Coutanceau, C., and Jerkiewiez, G., Electrooxidation of COchem.on Pt nanosurfaces: Solution of the peak multiplicity puzzle, Langmuir, 2012, vol. 28, p. 3658.

    Article  CAS  PubMed  Google Scholar 

  220. Wang, H., Jusys, Z., Behm, R.J., and Abruna, H.D., New insights into the mechanism and kinetics of adsorbed CO electrooxidation on platinum: online mass spectroscopy and kinetic Monte Carlo simulation studies, J. Phys. Chem. C, 2012, vol. 116, p. 11040.

    Article  CAS  Google Scholar 

  221. Wang, H. and Abruna, H.D., Origin of multiple peaks in potentiodynamic oxidation of CO adlayers on Pt and Ru-modified Pt electrodes, J. Phys. Chem. Lett., 2015, vol. 6, p. 1899.

    Article  CAS  PubMed  Google Scholar 

  222. Farias, M.J.S., Buso-Rogero, C., Vidal-Iglesias, F.J., Solla-Gullon, J., Camara, G.A., and Feliu, J.M., Mobility and oxidation of adsorbed CO on shape-controlled Pt nanoparticles in acidic medium, Langmuir, 2017, vol. 33, p. 865.

    Article  CAS  PubMed  Google Scholar 

  223. Lebedeva, N.P., Koper, M.T.M., Feliu, J.M., and van Santen, R.A., Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes, J. Phys. Chem. B, 2002, vol. 106, p. 12938.

    Article  CAS  Google Scholar 

  224. McCallum, C. and Pletcher, D., An investigation of the mechanism of the oxidation of carbon monoxide adsorbed onto a smooth Pt electrode in aqueous acid, J. Electroanal. Chem., 1976, vol. 70, p. 277.

    Article  CAS  Google Scholar 

  225. Chang, S.C. and Weaver, M.J., In-situ infrared spectroscopy of CO adsorbed at ordered Pt(110)-aqueous interfaces, Surf. Sci., 1990, vol. 230, p. 222.

    Article  CAS  Google Scholar 

  226. McPherson, I.J., Ash, P.A., Jones, L., Varambhia, A., Jacobs, R.M.J., and Vincent, K.A., Electrochemical CO oxidation at platinum on carbon studied through analysis of anomalous in situ IR spectra, J. Phys. Chem. C, 2017, vol. 121, p. 17176.

    Article  CAS  Google Scholar 

  227. Maillard, F., Savinova, E.R., and Stimming, U., CO monolayer oxidation on Pt nanoparticles: Further insights into the particle size effects, J. Electroanal. Chem., 2007, vol. 599, p. 221.

    Article  CAS  Google Scholar 

  228. Podlovchenko, B.I., Manzhos, R.A., and Maksimov, Yu.M., Interaction of HCO-substances with adsorbed oxygen on platinum electrodes: open-circuit transient reactions of HCOOH and CO, Electrochim. Acta, 2005, vol. 50, p. 4807.

    Article  CAS  Google Scholar 

  229. Manzhos, R.A., Maksimov, Yu.M., and Podlovchenko, B.I., Transients of the open-circuit potential observed during the interaction of formic acid with preliminarily adsorbed oxygen on a platinized platinum electrode, Russ. J. Electrochem., 2005, vol. 41, p. 832.

    Article  CAS  Google Scholar 

  230. Manzhos, R.A., Podlovchenko, B.I., and Maksimov, Yu.M., Specific features of interaction between formic acid and oxygen adsorbed on smooth polycrystalline platinum: transients of the open-circuit potential, Russ. J. Electrochem., 2006, vol. 42, p. 658.

    Article  CAS  Google Scholar 

  231. Podlovchenko, B.I., Manzhos, R.A., and Maksimov, Yu.M., Kinetics and mechanism of interaction between methanol and adsorbed oxygen on a smooth polycrystalline platinum electrodes: transients of the open-circuit potential, Russ. J. Electrochem., 2006, vol. 42, p. 1061.

    Article  CAS  Google Scholar 

  232. Manzhos, R.A., Podlovchenko, B.I., and Maksimov, Yu.M., Specific features of methanol interaction with adsorbed oxygen at platinized platinum electrode: transients of open-circuits potential, Russ. J. Electrochem., 2007, vol. 43, p. 1268.

    Article  CAS  Google Scholar 

  233. Sitta, E. and Varela, H., On the open-circuit interaction between methanol and oxidized platinum, J. Solid State Electrochem., 2008, vol. 12, p. 554.

    Article  CAS  Google Scholar 

  234. Batista, B.C., Sitta, E., Eiswirth, M., and Varela, H., Autocatalysis in the open circuit interaction of alcohol molecules with oxidized Pt surfaces, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6686.

    Article  CAS  PubMed  Google Scholar 

  235. Batista, B.C. and Varela, H., Open circuit interaction of formic acid with oxidized Pt surfaces: experiment, modeling and simulations, J. Phys. Chem. C, 2010, vol. 114, p. 18494.

    Article  CAS  Google Scholar 

  236. Tao, Q., Zheng, Y.-L., Jiang, D.-C., Chen, Y.-X., Jusys, Z., and Behm, R.J., Interaction of C1 molecules with Pt electrode at open circuit potential: a combined infrared and mass spectroscopic study, J. Phys. Chem. C, 2014, vol. 118, p. 6799.

    Article  CAS  Google Scholar 

  237. Jurzinsky, N., Kurzhals, P., and Crevers, C., A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic methanol oxidation reaction on oxygen reduction catalysts, J. Power Sources, 2018, vol. 389, p. 61.

    Article  CAS  Google Scholar 

  238. Climent, V. and Feliu, J.M., Surface electrochemistry with Pt single-crystal electrodes, in: Advances in Electrochemical Science and Engineering, Vol. 17, Nanopatterned and Nanoparticle-Modified Electrodes, Alkire, R.C., Bartlett, N., and Lipkowski, J. (Eds.), Weinheim: Wiley-VCH, 2017, p. 1.

    Book  Google Scholar 

  239. Motoo, S. and Furuya, N., Effect of terraces and steps in the electrocatalysis for formic acid oxidation on platinum, Ber. Bunsen-Ges., 1987, vol. 91, p. 457.

    Article  CAS  Google Scholar 

  240. Grozovski, V., Climent, V., Herrero, E., and Feliu, J.M., Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps, Chem., Phys. Chem., 2009, vol. 10, p. 1922.

    Article  CAS  Google Scholar 

  241. Grozovski, V., Climent, V., Herrero, E., and Feliu, J.M., Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 8822.

    CAS  Google Scholar 

  242. Koper, M.T.M., Structure sensitivity and nanoscale effects in electrocatalysis, Nanoscale, 2011, vol. 3, p. 2054.

    Article  CAS  PubMed  Google Scholar 

  243. Cuesta, A., Atomic ensemble effects in electrocatalysis: The site-knockout strategy, Chem., Phys. Chem., 2011, vol. 12, p. 2375.

    Article  CAS  Google Scholar 

  244. Park, S., Xie, Y., and Weaver, M., Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid and formaldehyde electrooxidation, Langmuir, 2002, vol. 18, p. 5792.

    Article  CAS  Google Scholar 

  245. Scheijen, F.J.E., Beltramo, G.L., Hoeppener, S., Housmans, T.H.M., and Koper, M.T.M., The electrooxidation of small organic molecules on platinum nanoparticles supported on gold: influence of platinum deposition procedure, J. Solid-State Electrochem., 2008, vol. 12, p. 483.

    Article  CAS  Google Scholar 

  246. Solla-Gullon, J., Vidal-Iglesias, F.J., Lopez-Cudero, A., Garnier, E., Feliu, J.M., and Aldaz, A., Shape-dependent electroocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3689.

    Article  CAS  PubMed  Google Scholar 

  247. Lee, S.W., Chen, S., Sheng, W., Yabuuchi, N., Kim, Y.-T., Mitani, T., Vescovo, E., and Shao-Horn, Y., Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol, J. Am. Chem. Soc., 2009, vol. 131, p. 15669.

    Article  CAS  PubMed  Google Scholar 

  248. Chumillas, S., Buso-Rogero, C., Solla-Gullon, J., Vidal-Iglesias, F.J., Herrero, E., and Feliu, J.M., Size and diffusion effects on the oxidation of formic acid and ethanol on platinum nanoparticles, Electrochem. Commun., 2011, vol. 13, p. 1194.

    Article  CAS  Google Scholar 

  249. Hoshi, N., Kida, K., Nakamura, M., Nakada, M., and Osada, K., Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium, J. Phys. Chem. B, 2006, vol. 110, p. 12480.

    Article  CAS  PubMed  Google Scholar 

  250. Hoshi, N., Nakamura, M., and Kida, K., Structural effects on the oxidation of formic acid on the high index planes of palladium, Electrochem. Commun., 2007, vol. 9, p. 279.

    Article  CAS  Google Scholar 

  251. Zhou, W.P., Lewera, R., Larsen, R., Masel, R.I., Bagus, P.S., and Wieckowski, A., Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid, J. Phys. Chem. B, 2006, vol. 110, p. 13393.

    Article  CAS  PubMed  Google Scholar 

  252. Zhou, W. and Lee, J.Y., Particle size effects in Pd-catalyzed electrooxidation of formic acid, J. Phys. Chem. C, 2008, vol. 112, p. 3789.

    Article  CAS  Google Scholar 

  253. Suo, Y. and Hsing, I.M., Size-controled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation, Electrochim. Acta, 2009, vol. 55, p. 210.

    Article  CAS  Google Scholar 

  254. Choi, S.-L., Harron, J.A., Scaranto, J., Huang, H., Wang, Y., Xia, X., Tian, Lv., Park. J., Peng, H.-C., Mavrikakis, M., and Xia, Y., A comprehensive study of formic acid on palladium nanocrystals with different types of facets and twin defects, ChemCatChem, 2011, vol. 7, p. 2077.

    Article  CAS  Google Scholar 

  255. Zheng, W., Qu, J., Hong, X., Tedsree, K., and Tsang, S.C.E., Probing the size and shape effects of cubic-and spherical-shaped palladium nanoparticles in the electrooxidation of formic acid, ChemCatChem, 2015, vol. 7, p. 3826.

    Article  CAS  Google Scholar 

  256. Ju, W., Valiollahi, R., Ojami, R., Schneider, O., and Stimming, U., The electrooxidation of formic acid on Pd hanoparticles: an investigation of size-dependent performance, Electrocatalysis, 2016, vol. 7, p. 149.

    Article  CAS  Google Scholar 

  257. Watanabe, M. and Motoo, S., Electrocatalysis by adatoms. Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms, J. Electroanalyt. Chem., 1975, vol. 60, p. 267.

    Article  CAS  Google Scholar 

  258. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized Pt-Ru alloys, J. Phys. Chem., 1993, vol. 97, p. 12029.

    Article  Google Scholar 

  259. Markovic, N., Gasteiger, H.A., Ross, P.N., Jiang, X., Villegas, I., and Weaver, M.J., Electro-oxidation mechanisms of methanol and formic acid on Pt–Ru alloy surfaces, Electrochim. Acta, 1995, vol. 40, p. 91.

    Article  CAS  Google Scholar 

  260. Gojkovic, S.Lj., Vidakovic, T.R., and Durovic, D.R., Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst, Electrochim. Acta, 2003, vol. 48, p. 3607.

    Article  CAS  Google Scholar 

  261. Tong, Y.Y., Kim, H.S., Babu, P.K., Waszczuk, P., Wieckowski, A., and Oldfield, E., An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst, J. Am. Chem. Soc., 2002, vol. 124, p. 468.

    Article  CAS  PubMed  Google Scholar 

  262. Pinheiro, A.L.N., Zei, M.S., and Ertl, G., Electrooxidation of carbon-monoxide and methanol on bare and Pt-modified Ru(1010) electrodes, Phys. Chem. Chem. Phys., 2005, vol. 7, p. 1300.

    Article  CAS  PubMed  Google Scholar 

  263. Sawy, E.N., El-Sayed, H.A., and Birss, V., Clarifying the role of Ru in methanol oxidation at Rucore@Ptshell nanoparticles, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 27509.

    Article  CAS  PubMed  Google Scholar 

  264. Du, B., Rabb, S.A., Zangmeister, C., and Tong, YY., A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles, Phys. Chem. Chem. Phys., 2009, vol. 11, p. 8231.

    Article  CAS  PubMed  Google Scholar 

  265. Kuznetsov, A.N., Simonov, P.A., Zaikovskii, V.I., Parmon, V.N., and Savinova, E.R., Temperature effects in carbon monoxide and methanol electrooxidation on platinum-ruthenium: influence of grain boundaries, J. Solid State Electrochem., 2013, vol. 17, p. 1903.

    Article  CAS  Google Scholar 

  266. Rigsby, M.A., Zhou, W.P., Lewera, A., Duong, H.T., Bagus, P.S., Jaegermann, W., Hynger, R., and Wieckowski, A., Experiment and theory of fuel cell electrocatalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru, J. Phys. Chem. C, 2008, vol. 112, p. 15595.

    Article  CAS  Google Scholar 

  267. Islam, M., Basnayake, R., and Korzeniewski, C., A study of formaldehyde formation during methanol oxidation over PtRu bulk alloys and nanometer scale catalyst, J. Electroanal. Chem., 2007, vol. 599, p. 31.

    Article  CAS  Google Scholar 

  268. Liu, B.J., Jin, J.M., Lin, X., Hardacre, C., Hu, P., Ma, C.A., and Lin, W.F., The effects of stepped sites and ruthenium adatom decoration on methanol dehydrogenation over platinum based catalyst surfaces, Catal. Today, 2015, vol. 242, p. 230.

    Article  CAS  Google Scholar 

  269. Ding, Q., Xu, W., Sang, P., Xu, J., Zhao, L., Xe, X., and Guo, W., Insight into reaction mechanisms of methanol on PtRu/Pt(111): a density functional study, Appl. Surf. Sci., 2016, vol. 369, p. 257.

    Article  CAS  Google Scholar 

  270. Wang, K., Gasteiger, H.A., Markovic, N.M., and Ross, P.N., Jr., On the reaction pathway for methanol and carbon monoxide electrooxidation on Pt-Sn alloy versus Pt-Ru alloy surfaces, Electrochim. Acta, 1996, vol. 41, p. 2583.

    Google Scholar 

  271. Colmati, F., Antolini, E., and Gonzalez, E.R., Electrocatalysts for methanol oxidation synthesized by reduction with formic acid, Electrochim. Acta, 2005, vol. 50, p. 5496.

    Article  CAS  Google Scholar 

  272. Wei, Z.D., Li, L.L., Luo, Y.H., Yan, C., Sun, C.X., Yin, G.Z., and Shen, P.K., Electrooxidation methanol on upd-Ru and upd-Sn modified Pt electrodes, J. Phys. Chem. B, 2006, vol. 110, p. 26055.

    Article  CAS  PubMed  Google Scholar 

  273. Liu, P., Logadottir, A., and Norskov, J.K., Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn, Electrochim. Acta, 2005, vol. 48, p. 3734.

    Google Scholar 

  274. Stevanovic, S., Tripkovic, D., Tripkovic, V., Minic, D., Gavrilovic, A., Tripkovic, A., and Jovanovic, V.M., Insight into the effect of Sn on CO and formic acid oxidation at PtSn catalysts, J. Phys. Chem. C, 2014, vol. 118, p. 278.

    Article  CAS  Google Scholar 

  275. Farias, M.J.S., Cheuquepan, W., Tanaka, A.A., and Feliu, J.M., Non-uniform synergistic effect of Sn and Ru in site-specific catalytic activity of Pt at bimetallic surfaces toward CO electrooxidation, ACS Catal., 2017, 10.1021/acscatal.7b00257

    Google Scholar 

  276. Rizo, R., Pastor, E., and Koper, M.T.M., CO electrooxidation on Sn-modified Pt single crystals in acid media, J. Electroanal. Chem., 2017, vol. 80, p. 32.

    Article  CAS  Google Scholar 

  277. Lu, X., Ding, Z., Guo, C., Wang, W., Wei, S., Ng, S.-P., Chen, X., Ding, N., Guo, W., and Wu, C.-M.L., Methanol oxidation on Pt3Sn(111) for direct methanol fuel cells: methanol decomposition, ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 12194.

    Article  CAS  PubMed  Google Scholar 

  278. Tritsaris, G.A. and Rossmeisl, J., Methanol excitation on model elemental and bimetallic transition metal surfaces, J. Phys. Chem. C, 2012, vol. 116, p. 11980.

    Article  CAS  Google Scholar 

  279. Choi, J.H., Park, K.W., Park, I.S., Nam, W.H., and Sung, Y.E., Methanol electrooxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts, Electrochim. Acta, 2004, vol. 50, p. 787.

    Article  CAS  Google Scholar 

  280. Sheng, T. and Sun, S.-G., Insight into the promoting role of Rh doped on Pt(111) in methanol electro-oxidation, J. Electroanal. Chem., 2016, vol. 781, p. 24.

    Article  CAS  Google Scholar 

  281. Suntivich, J., Xu, Z., Carlton, C.E., Kim, J., Han, B., Lee, S.W., Bonnet, N., Mazzari, N., Allard, L.F., Hasteiger, H.A., Hamad–Schifferli, K., and Shao-Horn, Y., Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation, J. Am. Chem. Soc., 2013, vol. 135, p. 7985.

    CAS  Google Scholar 

  282. Conway, B.E., Angerstein-Kozlowska, H., and Czartoryska, G., “Third body” effect in the auto-inhibition of formic acid oxidation on electrodes, Z. Phys. Chem. N.F., 1978, vol. 112, p. 195.

    CAS  Google Scholar 

  283. Leiva, E., Iwasita, T., Herrero, E., and Feliu, J.M., Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model, Langmuir, 1997, vol. 13, p. 6287.

    Article  CAS  Google Scholar 

  284. Vidal-Iglesias, F.J., Lopez-Cudero, A., Sulla-Gullon, J., and Feliu, J.M., Towards more active and stable electrocatalysts for formic acid electrooxidation: antimony decorated octahedral platinum nanoparticles, Angew. Chem., Int. Ed., 2013, vol. 52, p. 964.

    Article  CAS  Google Scholar 

  285. Buso-Rogero, C., Peralles-Rondon, J.V., Farias, F.J., Vidal-Iglesias, F.J., Solla-Gullon, J., Herrero, E., and Feliu, J.M., Formic acid electrooxidation on thalliumdecorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13616.

    Article  CAS  PubMed  Google Scholar 

  286. Ferre-Vilaplana, A., Perales-Rondon, J.V., Feliu, J.M., and Herrero, E., Understanding the effect of the adatoms in formic acid oxidation mechanism on Pt(111) electrodes, ACS Catal., 2015, vol. 5, p. 645.

    Article  CAS  Google Scholar 

  287. Perales-Rondon, J.V., Solla-Gullon, J., Herrero, E., and Sanchez-Sanchez, C.M., Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles, Appl. Catal., B, 2017, vol. 201, p. 2095.

    Article  CAS  Google Scholar 

  288. Yu, X. and Pickup, P.G., Pb and Sb modified Pt/C catalysts for direct formic acid fuel cell, Electrochim. Acta, 2010, vol. 55, p. 7354.

    Article  CAS  Google Scholar 

  289. Llorca, M.J., Feliu, J.M., Aldaz, A., and Clavilier, J., Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes, J. Electroanal. Chem., 1994, vol. 376, p. 151.

    Article  CAS  Google Scholar 

  290. Waszczuk, P., Barnard, T.M., Race, C., Masel, R.L., and Wieckowski, A., A nanoparticle catalyst with superior activity for electrooxidation of formic acid, Electrochem. Commun., 2002, vol. 4, p. 599.

    Article  CAS  Google Scholar 

  291. Lee, H., Habas, S.E., Somorjai, G.A., and Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrooxidation of formic acid, J. Am. Chem. Soc., 2008, vol. 130, p. 5406.

    Article  CAS  PubMed  Google Scholar 

  292. Liu, B., Li, H.Y., Die, L., Zhang, X.-H., Fan, Z., and Chen, Y.H., Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation, J. Power Sources, 2009, vol. 186, p. 62.

    Article  CAS  Google Scholar 

  293. Vidal-Iglesias, F.J., Solla-Gullon, J., Herrero, E., Aldaz, A., and Feliu, J.M., Pd decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation, Angew. Chem., Int. Ed., 2010, vol. 49, p. 6998.

    Article  CAS  Google Scholar 

  294. Zhang, H.X., Wang, C., Wang, J.Y., Zhai, J.J., and Cai, W.B., Carbon-supported Pd-Pt nanoalloy with low Pt content and superior catalysis for formic acid electrooxidation, J. Phys. Chem. C, 2010, vol. 114, p. 6446.

    Article  CAS  Google Scholar 

  295. Kim, J., Jung, C., Rhee, C.K., and Lim, T., Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111), Langmuir, 2007, vol. 23, p. 10831.

    Article  CAS  PubMed  Google Scholar 

  296. Park, I.S., Lee, K.S., Choi, J.H., Park, H.Y., and Sung, Y.E., Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electrooxidation, J. Phys. Chem. C, 2007, vol. 111, p. 19126.

    Article  CAS  Google Scholar 

  297. Xu, J.B., Zhao, T.S., and Liang, Z.X., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cell, J. Power Sources, 2008, vol. 185, p. 857.

    Article  CAS  Google Scholar 

  298. Kristian, N. and Yu, Y.L., Ptshell-Aucore/C electrocatalyst with a controlled shell thickness and improved Pt utilization for fuel cell reactions, Electrochem. Commun., 2008, vol. 10, p. 12.

    Article  CAS  Google Scholar 

  299. Wang, S.Y., Kristian, N., Jiang, S.P., and Wang, X., Controlled deposition of Pt on Au nanorodes and their catalytic activity towards formic acid oxidation, Electrochem. Commun., 2008, vol. 10, p. 961.

    Article  CAS  Google Scholar 

  300. Kristian, N., Yu, Y.L., Gunawan, P, Xu, R., Deng, W., Liu, X., and Wang, X., Controlled synthesis of Pt-decorated Au nanostructure and its promoted activity toward formic acid electro-oxidation, Electrochim. Acta, 2009, vol. 54, p. 4916.

    Article  CAS  Google Scholar 

  301. Obradovich, M.D., Tripkovic, A.V., and Gojkovic, S.L., The origin of high activity of Pt-Au surfaces in the formic acid oxidation, Electrochim. Acta, 2009, vol. 55, p. 204.

    Article  CAS  Google Scholar 

  302. Liu, Y., Wang, L.W., Wang, G., Dong, C., Wu, B., and Gao, Y., High active carbon supported PdAu catalyst for formic acid electrooxidation and study of the kinetics, J. Phys. Chem. C, 2010, vol. 114, p. 21417.

    Article  CAS  Google Scholar 

  303. Obradovic, M.D., Rogan, J.R., Babic, B.M., Tripkovic, A.V., Guntam, A.R.S., Radmilovic, V.R., and Gojkovic, S.L., Formic acid oxidation on Pt–Au nanoparticles: relation between the catalyst activity and poisoning rate, J. Power Sources, 2012, vol. 197, p. 72.

    Article  CAS  Google Scholar 

  304. Yuan, D.W. and Liu, Z.R., Atomic ensemble effects on formic acid oxidation on PdAu electrode studied by first-principles calculations, J. Power Sources, 2013, vol. 224, p. 241.

    Article  CAS  Google Scholar 

  305. Zhong, W., Qi, Y. and Dong, M., The ensemble effect of formic acid oxidation on platinum-gold electrode studied by first-principles calculations, J. Power Sources, 2015, vol. 278, p. 203.

    Article  CAS  Google Scholar 

  306. Duan, T., Zhang, R., Ling, I., and Wang, B., Insights into the effect of Pt atomic ensemble on HCOOH oxidation over Pt-decorated Au bimetallic catalyst to optimize Pt utilization, J. Phys. Chem. C, 2016, vol. 120, p. 2234.

    Article  CAS  Google Scholar 

  307. Jeong, H. and Kim, J., Insights into the electrooxidation mechanism of formic acid on Pt layers on Au examined by Electrochemical SERS, J. Phys. Chem. C, 2016, vol. 120, p. 24271.

    Article  CAS  Google Scholar 

  308. Cellorio, V., Quaino, P.U., Santos, E., Florez-Montano, J., Humphray, J.J.L., Quillon-Villafuerte, O., Plana, D., Lazaro, M.J.,Pastor, E., and Fermin, D.J., Strain effects in the oxidation of CO and HCOOH on Au–Pd core–shell nanoparticles, ACS Catal., 2017, vol. 7, p. 3826.

    Google Scholar 

  309. Wang, H., Alden, L., DiSalvo, E.J., and Abruna, H.D., Electrocatalytic mechanism and kinetics of SOC oxidation on ordered PtPb and PtBi intermetallic compound: DEMS and FTIRS study, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 3739.

    Article  CAS  PubMed  Google Scholar 

  310. Demirci U.B., Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquidfeed fuel cells, J. Power Sources, 2007, vol. 173, p. 11.

    Article  CAS  Google Scholar 

  311. Norskov, J.K., Bligaard, T., Rossmeisl, J., and Christensen, C.H., Towards the computational design of solid catalysts, Nat. Chem., 2009, vol. 1, p. 34.

    Article  CAS  Google Scholar 

  312. Calle-Vallejo, F., Koper, M.T.M, and Bandarenka, A.S., Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals, Chem. Soc. Rev., 2013, vol. 42, p. 5210.

    Article  CAS  PubMed  Google Scholar 

  313. Koper, M.T.M., Volcano activity relationships for proton-coupled electron transfer reactions in electrocatalysis, Top. Catal., 2015, vol. 58, p. 1153.

    Article  CAS  Google Scholar 

  314. Sasikumar, G., Mathumeenal, A., Pethaiah, S.S., Nachiappen, N., and Balaji, R., Aqueous methanol electrolysis using proton conducting membrane for hydrogen production, Int. J. Hydrogen Energy, 2008, vol. 33, p. 5905.

    Article  CAS  Google Scholar 

  315. Cloutier, P.R. and Wilkinson, D.P., Electrolytic production of hydrogen from aqueous acidic methanol solutions, Int. J. Hydrogen Energy, 2010, vol. 35, p. 3967.

    Article  CAS  Google Scholar 

  316. Lamy, C., Guenot, B., Cretin, M., and Pourcelly, G., Kinetics analysis of the electrocatalytic oxidation of methanol inside DMFC working as a PEM electrolytic cell (PEMEC) to generate clean hydrogen, Electrochim. Acta, 2015, vol. 177, p. 352.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Petrii.

Additional information

Russian Text © O.A. Petrii, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 1, pp. 3–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrii, O.A. The Progress in Understanding the Mechanisms of Methanol and Formic Acid Electrooxidation on Platinum Group Metals (a Review). Russ J Electrochem 55, 1–33 (2019). https://doi.org/10.1134/S1023193519010129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519010129

Keywords

Navigation