Skip to main content

Advertisement

Log in

Prediction of Experimental Methanol Decomposition Rates on Platinum from First Principles

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

A microkinetic model for methanol decomposition on platinum is presented. The model incorporates competitive decomposition pathways, beginning with both O–H and C–H bond scission in methanol, and uses results from density functional theory (DFT) calculations [Greeley and Mavrikakis, J. Am. Chem. Soc. 124 (2002) 7193, Greeley and Mavrikakis, J. Am. Chem. Soc. 126 (2004) 3910]. Results from reaction kinetics experiments show that the rate of H2 production increases with increasing temperature and methanol concentration in the feed and is only nominally affected by the presence of CO or H2 with methanol. The model, based on the values of binding energies, pre-exponential factors and activation energy barriers derived from first principles calculations, accurately predicts experimental reaction rates and orders. The model also gives insight into the most favorable reaction pathway, the rate-limiting step, the apparent activation energy, coverages, and the effects of pressure. It is found that the pathway beginning with the C–H bond scission (CH3OH→H2COH→HCOH→CO) is dominant compared with the path beginning with O–H bond scission. The cleavage of the first C–H bond in methanol is the rate-controlling step. The surface is highly poisoned by CO, whereas COH appears to be a spectator species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kartha P. Grimes (1994) Phys. Today 47 54 Occurrence Handle1:CAS:528:DyaK2MXisVenurY%3D

    CAS  Google Scholar 

  2. P. Strasser Q. Fan M. Devenney W.H. Weinberg P. Liu J.K. Nørskov (2003) J. Phys. Chem. B 107 11013 Occurrence Handle10.1021/jp030508z Occurrence Handle1:CAS:528:DC%2BD3sXnvVCnsb8%3D

    Article  CAS  Google Scholar 

  3. R. Venkataraman H.R. Kunz J.M. Fenton (2003) J. Electrochem. Soc. 150 A278 Occurrence Handle10.1149/1.1543567 Occurrence Handle1:CAS:528:DC%2BD3sXhtlygurk%3D

    Article  CAS  Google Scholar 

  4. P.K. Balm H.S. Kim E. Oldfield A. Wieckowski (2003) J. Phys. Chem. B 107 7595

    Google Scholar 

  5. G.W. Huber J.W. Shabaker J.A. Dumesic (2003) Science 300 2075 Occurrence Handle10.1126/science.1085597 Occurrence Handle1:CAS:528:DC%2BD3sXkvVOrsLc%3D

    Article  CAS  Google Scholar 

  6. J. Greeley M. Mavrikakis (2002) J. Am. Chem. Soc. 124 7193 Occurrence Handle10.1021/ja017818k Occurrence Handle1:CAS:528:DC%2BD38XjvFagsLs%3D

    Article  CAS  Google Scholar 

  7. J. Greeley M. Mavrikakis (2004) J. Am. Chem. Soc. 126 3910 Occurrence Handle10.1021/ja037700z Occurrence Handle1:CAS:528:DC%2BD2cXhslyqtb0%3D

    Article  CAS  Google Scholar 

  8. R.D. Cortright J.A. Dumesic (2002) Adv. Catal. 46 161

    Google Scholar 

  9. S. Kandoi A.A. Gokhale L.C. Grabow J.A. Dumesic M. Mavrikakis (2004) Catal. Lett. 93 93 Occurrence Handle10.1023/B:CATL.0000016955.66476.44 Occurrence Handle1:CAS:528:DC%2BD2cXhsVGqs7k%3D

    Article  CAS  Google Scholar 

  10. A.A. Gokhale S. Kandoi J.P. Greeley M. Mavrikakis J.A. Dumesic (2004) Chem. Eng. Sci. 59 4679 Occurrence Handle1:CAS:528:DC%2BD2cXhtVCqtrnM

    CAS  Google Scholar 

  11. K. Honkala A. Hellman I.N. Remediakis A. Logadottir A. Carlsson S. Dahl C.H. Christensen J.K. Nørskov (2005) Science 307 555 Occurrence Handle10.1126/science.1106435 Occurrence Handle1:CAS:528:DC%2BD2MXmslOjuw%3D%3D

    Article  CAS  Google Scholar 

  12. K. Reuter D. Frenkel M. Scheffler (2004) Phys. Rev. Lett. 93 116105/1 Occurrence Handle10.1103/PhysRevLett.93.116105 Occurrence Handle1:CAS:528:DC%2BD2cXnsVCrurs%3D

    Article  CAS  Google Scholar 

  13. S. Linic J. Jankowiak M.A. Barteau (2004) J. Catal. 224 489 Occurrence Handle10.1016/j.jcat.2004.03.007 Occurrence Handle1:CAS:528:DC%2BD2cXjvVGisLs%3D

    Article  CAS  Google Scholar 

  14. J.A. Dumesic D.F. Rudd L.M. Aparicio J.E. Rekoske A.A. Trevino (1993) The Microkinetics of Heterogeneous Catalysis American Chemical Society Washington D.C.

    Google Scholar 

  15. L.M. Aparicio, J.A. Dumesic, Top. Catal. 1(3,4, Frontiers in Catalysis: Ammonia Synthesis and Beyond) (1994) 233

  16. K.C. Waugh (1999) Catal. Today 53 161 Occurrence Handle10.1016/S0920-5861(99)00114-5 Occurrence Handle1:CAS:528:DyaK1MXns1OmtLg%3D

    Article  CAS  Google Scholar 

  17. S. Dahl J. Sehested C.J.H. Jacobsen E. Tornqvist I. Chorkendorff (2000) J. Catal. 192 391 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Wgs7c%3D

    CAS  Google Scholar 

  18. C. Callaghan I. Fishtik R. Datta M. Carpenter M. Chmielewski A. Lugo (2003) Surf. Sci. 541 21 Occurrence Handle10.1016/S0039-6028(03)00953-1 Occurrence Handle1:CAS:528:DC%2BD3sXmsVOltb8%3D

    Article  CAS  Google Scholar 

  19. C.V. Ovesen P. Stoltze J.K. Nørskov C.T. Campbell (1992) J. Catal. 134 445 Occurrence Handle10.1016/0021-9517(92)90334-E Occurrence Handle1:CAS:528:DyaK38XitVWrtbo%3D

    Article  CAS  Google Scholar 

  20. C.V. Ovesen B.S. Clausen B.S. Hammershoi G. Steffensen T. Askgaard I. Chorkendorff J.K. Nørskov P.B. Rasmussen P. Stoltze P. Taylor (1996) J. Catal. 158 170 Occurrence Handle10.1006/jcat.1996.0016 Occurrence Handle1:CAS:528:DyaK28XmsVGjsQ%3D%3D

    Article  CAS  Google Scholar 

  21. T.S. Askgaard J.K. Nørskov C.V. Ovesen P. Stoltze (1995) J. Catal. 156 229 Occurrence Handle10.1006/jcat.1995.1250 Occurrence Handle1:CAS:528:DyaK2MXos1WjsL0%3D

    Article  CAS  Google Scholar 

  22. C.V. Ovesen B.S. Clausen J. Schiotz P. Stoltze H. Topsøe J.K. Nørskov (1997) J. Catal. 168 133 Occurrence Handle10.1006/jcat.1997.1629 Occurrence Handle1:CAS:528:DyaK2sXjslSisrs%3D

    Article  CAS  Google Scholar 

  23. A. Andreasen H. Lynggaard C. Stegelmann P. Stoltze (2003) Surf. Sci. 544 5 Occurrence Handle10.1016/j.susc.2003.08.007 Occurrence Handle1:CAS:528:DC%2BD3sXnsVaiurc%3D

    Article  CAS  Google Scholar 

  24. J. Hoffmann S. Schauermann V. Johanek J. Hartmann J. Libuda (2003) J. Catal. 213 176 Occurrence Handle10.1016/S0021-9517(02)00029-5 Occurrence Handle1:CAS:528:DC%2BD3sXkvVOhug%3D%3D

    Article  CAS  Google Scholar 

  25. B.E. Spiewak J. Shen J.A. Dumesic (1995) J. Phys. Chem. 99 17640 Occurrence Handle10.1021/j100049a026 Occurrence Handle1:CAS:528:DyaK2MXptlWktr8%3D

    Article  CAS  Google Scholar 

  26. B. Hammer L.B. Hansen J.K. Nørskov (1999) Phys. Rev. B 59 7413 Occurrence Handle10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  27. J. Kua W. Goddard (1999) J. Am. Chem. Soc. 121 10928 Occurrence Handle10.1021/ja9844074 Occurrence Handle1:CAS:528:DyaK1MXnt1SgtbY%3D

    Article  CAS  Google Scholar 

  28. Y. Ishikawa M.S. Liao C.R. Cabrera (2000) Surf. Sci. 463 66 Occurrence Handle10.1016/S0039-6028(00)00600-2 Occurrence Handle1:CAS:528:DC%2BD3cXls1Cqurc%3D

    Article  CAS  Google Scholar 

  29. G. Burstein C. Barnett A. Kucernak K. Williams (1997) Catal. Today 38 425 Occurrence Handle10.1016/S0920-5861(97)00107-7 Occurrence Handle1:CAS:528:DyaK2sXnvF2ksrg%3D

    Article  CAS  Google Scholar 

  30. S.K. Desai M. Neurock K. Kourtakis (2002) J. Phys. Chem. B 106 2559 Occurrence Handle10.1021/jp0132984 Occurrence Handle1:CAS:528:DC%2BD38Xht1eltbY%3D

    Article  CAS  Google Scholar 

  31. P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, Gaithersburg, MD, 20899) (2003) (http://www.webbook.nist.gov)

  32. C.L. Yaws (1999) Chemical Properties Handbook McGraw-Hill New York

    Google Scholar 

  33. M.A.N. Santiago M.A. Sanchez-Castillo R.D. Cortright J.A. Dumesic (2000) J. Catal. 193 16 Occurrence Handle10.1006/jcat.2000.2883 Occurrence Handle1:CAS:528:DC%2BD3cXktVKjurc%3D

    Article  CAS  Google Scholar 

  34. B. Hammer J.K. Nørskov (1995) Nature 376 238 Occurrence Handle10.1038/376238a0 Occurrence Handle1:CAS:528:DyaK2MXntFSmurk%3D

    Article  CAS  Google Scholar 

  35. M.A. Sanchez-Castillo N. Agarwal C. Miller R.D. Cortright R.J. Madon J.A. Dumesic (2002) J. Catal. 205 67 Occurrence Handle10.1006/jcat.2001.3419 Occurrence Handle1:CAS:528:DC%2BD3MXpt1aqtLY%3D

    Article  CAS  Google Scholar 

  36. W.A. Brown R. Kose D.A. King (1998) Chem. Rev. 98 797 Occurrence Handle10.1021/cr9700890 Occurrence Handle1:CAS:528:DyaK1cXhs1Grtr0%3D

    Article  CAS  Google Scholar 

  37. W.E. Stewart M. Caracotsios J.P. Sorensen (1992) AIChE J. 38 641 Occurrence Handle1:CAS:528:DyaK38XisFyjt7w%3D

    CAS  Google Scholar 

  38. C.T. Campbell (1994) Top. Catal. 1 353 Occurrence Handle10.1007/BF01492288 Occurrence Handle1:CAS:528:DyaK2MXpvFahtr8%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manos Mavrikakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandoi, S., Greeley, J., Sanchez-Castillo, M.A. et al. Prediction of Experimental Methanol Decomposition Rates on Platinum from First Principles. Top Catal 37, 17–28 (2006). https://doi.org/10.1007/s11244-006-0001-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0001-1

Keywords

Navigation