Skip to main content
Log in

Electrocatalytic oxidation and reduction of H2O2 on Au single crystals

  • Section 3. Electron Transfer Kinetics and Electrochemical Processes
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the reduction and oxidation of hydrogen peroxide on Au single crystals is studied in weakly adsorbing electrolytes. Results are discussed in terms of the potential of zero charge and the adsorption strength of different anions, which in turn depend on the crystallographic orientation of the electrode. Close to the reaction onset, both reactions follow the same activity trend with Au(100) and Au(111) being the most and the least active surface planes, respectively. At high potentials, gold oxides inhibit the oxidation of H2O2, which seems to be controlled by a surface process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wroblowa, H., Pan, Y.C., and Razumney, J., Electroreduction of oxygen: A new mechanistic criterion, J. Electroanal. Chem., 1976, vol. 69, p. 195.

    Article  CAS  Google Scholar 

  2. Schneider, A., Colmenares, L., Seidel, Y.E., Jusys, Z., Wickman, B., Kasemo, B., and Behm, R.J., Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1931.

    Article  CAS  Google Scholar 

  3. Seidel, Y.E., Schneider, A., Jusys, Z., Wickman, B., Kasemo, B., and Behm, R.J., Mesoscopic mass transport effects in electrocatalytic processes, Faraday Discuss., 2008, vol. 140, p. 167.

    Article  CAS  Google Scholar 

  4. Hoare, J.P., Oxygen overvoltage measurements on bright platinum in acid solutions, I: Bright platinum, J. Electrochem. Soc., 1965, vol. 112, p. 602.

    Article  CAS  Google Scholar 

  5. Hoare, J.P., Oxygen overvoltage measurements on bright platinum in acid solutions, II: Bright platinum in H2O2 stabilized acid solutions, J. Electrochem. Soc., 1965, vol. 112, p. 608.

    Article  Google Scholar 

  6. Urbach, H.B. and Bowen, R.J., Behaviour of the oxygen- peroxide couple on platinum, Electrochim. Acta, 1969, vol. 14, p. 927.

    Article  CAS  Google Scholar 

  7. Huang, J.C., Sen, R.K., and Yeager, E., Oxygen reduction on platinum in 85% orthophosphoric acid, J. Electrochem. Soc., 1979, vol. 126, p. 786.

    Article  CAS  Google Scholar 

  8. Markovic, N.M., Gasteiger, H.A., and Ross, P.N., Oxygen reduction on platinum low–index single–crystal surfaces in sulfuric acid solution: rotating ring- Pt(hkl) disk studies, J. Phys. Chem., 1995, vol. 99, p. 3411.

    Article  CAS  Google Scholar 

  9. Markovic, N.M., Gasteiger, H.A., and Ross, P.N., Oxygen reduction on platinum low–index single–crystal surfaces in alkaline solution: Rotating ring disk Pt(hkl) studies, J. Phys. Chem., 1996, vol. 100, p. 6715.

    Article  Google Scholar 

  10. Grgur, B.N., Markovic, N.M., and Ross, P.N., Temperature- dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions, Can. J. Chem., 1997, vol. 75, p. 1465.

    Article  CAS  Google Scholar 

  11. Maciá, M.D., Campiña, J.M., Herrero, E., and Feliu, J.M., On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media, J. Electroanal. Chem., 2004, vol. 564, p. 141.

    Article  Google Scholar 

  12. Bianchi, G., Mazza, F., and Mussini, T., Catalytic decomposition of acid hydrogen peroxide solutions on platinum, iridium, palladium and gold surfaces, Electrochim. Acta, 1962, vol. 7, p. 457.

    Article  CAS  Google Scholar 

  13. Hoare, J.P., Oxygen overvoltage on bright gold, I, Electrochim. Acta, 1966, vol. 11, p. 311.

    Article  CAS  Google Scholar 

  14. Hoare, J.P., Oxygen overvoltage on bright gold, II: Bright gold in H2O2-stabilized acid solutions, Electrochim. Acta, 1966, vol. 11, p. 549.

    Article  CAS  Google Scholar 

  15. Bianchi, G., Mazza, F., and Mussini, T., Oxygen and hydrogen-peroxide processes on gold electrodes in acid solutions, Electrochim. Acta, 1966, vol. 11, p. 1509.

    Article  CAS  Google Scholar 

  16. Zurilla, R.W., Sen, R.K., and Yeager, E., The kinetics of the oxygen reduction reaction on gold in alkaline solution, J. Electrochem. Soc., 1978, vol. 125, p. 1103.

    Article  CAS  Google Scholar 

  17. Adzic, R.R., Markovic, N.M., and Vesovic, V.B., Structural effects in electrocatalysis oxygen reduction on the Au(100) single crystal electrodes, J. Electroanal. Chem., 1984, vol. 165, p. 105.

    Article  CAS  Google Scholar 

  18. Markovic, N.M., Adzic, R.R., and Vesovic, V.B., Structural effects in electrocatalysis oxygen reduction on the gold single crystal electrodes with (110) and (111) orientations, J. Electroanal. Chem., 1984, vol. 165, p. 121.

    Article  CAS  Google Scholar 

  19. Anastasijevic, N.A., Strbac, S., and Adzic, R.R., Oxygen reduction on the Au (311) electrode surface in alkaline electrolyte, J. Electroanal. Chem., 1988, vol. 240, p. 239.

    Article  CAS  Google Scholar 

  20. Adzic, R.R., Strbac, S., and Anastasijevic, N., Electrocatalysis of oxygen on single crystal gold electrodes, Mater. Chem. Phys., 1989, vol. 22, p. 349.

    Article  CAS  Google Scholar 

  21. Markovic, N.M., Tidewell, I.M., and Ross, P.N., Oxygen and hydrogen peroxide reduction on the Au(100) surface in alkaline electrolyte: the roles of surface structure and hydroxide adsorption, Langmuir, 1994, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  22. Prieto, A., Hernández, J., Herrero, E., and Feliu, J.M., The role of anions in oxygen reduction in neutral and basic media on gold single-crystal electrodes, J. Solid State Electrochem., 2003, vol. 7, p. 599.

    Article  CAS  Google Scholar 

  23. Blizanac, B.B., Lucas, C.A., Gallagher, M.E., Arenz, M., Ross, P.N., and Markovic, N.M., Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: The pH effect, J. Phys. Chem. B, 2004, vol. 108, p. 625.

    Article  CAS  Google Scholar 

  24. Jirkovsky, J.S., Halasa, M., and Schiffrin, D.J., Kinetics of electrocatalytic reduction of oxygen and hydrogen peroxide on dispersed gold nanoparticles, Phys. Chem. Chem. Phys., 2010, vol. 12, p. 8042.

    Article  CAS  Google Scholar 

  25. Zheng, Y.L., Mei, D., Chen, Y.-X., and Ye, S., The redox reaction of hydrogen peroxide at an Au(100) electrode: Implications for oxygen reduction kinetics, Electrochem. Commun., 2014, vol. 39, p. 19.

    Article  CAS  Google Scholar 

  26. Kolthoff, I.M. and Jordan, J., Oxygen induced electroreduction of hydrogen peroxide at the rotated platinum electrode, J. Am. Chem. Soc., 1952, vol. 74, p. 570.

    Article  CAS  Google Scholar 

  27. Kolthoff, I.M. and Jordan, J., Oxygen induced electroreduction of hydrogen peroxide and reduction of oxygen at the rotated gold wire electrode, J. Am. Chem. Soc., 1952, vol. 74, p. 4801.

    Article  CAS  Google Scholar 

  28. Bockris, J.O.M. and Oldfield, L.F., The oxidationreduction reactions of hydrogen peroxide at inert metal electrodes and mercury cathodes, Trans. Faraday Soc., 1955, vol. 51, p. 249.

    Article  CAS  Google Scholar 

  29. Bowen, R.J. and Urbach, H.B., Dynamic behaviour of the oxygen–peroxide couple on platinum, J. Chem. Phys., 1968, vol. 49, p. 1206.

    Article  CAS  Google Scholar 

  30. Hoare, J.P., A study of the rest potentials in the goldoxygen- acid system, J. Electrochem. Soc., 1963, vol. 110, p. 245.

    Article  CAS  Google Scholar 

  31. Hoare, J.P., Potentiostatic polarization studies on platinum, gold and rhodium oxygen electrodes, Electrochim. Acta, 1966, vol. 11, p. 203.

    Article  CAS  Google Scholar 

  32. Wroblowa, H., Rao, M.L.B., Damjanovic, A., and Bockris, J.O.M., Adsorption and kinetics at platinum electrodes in the presence of oxygen at zero net current, J. Electroanal. Chem. Interfacial Electrochem., 1967, vol. 15, p. 139.

    Article  CAS  Google Scholar 

  33. Hickling, A. and Wilson, W.H., The anodic decomposition of hydrogen peroxide, J. Electrochem. Soc., 1951, vol. 98, p. 425.

    Article  CAS  Google Scholar 

  34. Huq, A.K.M.S. and Makrides, A.C., Hydrogen peroxide reactions on gold electrodes, J. Electrochem. Soc., 1965, vol. 112, p. 756.

    Article  CAS  Google Scholar 

  35. Hall, S.B., Khudaish, E.A., and Hart, A.L., Electrochemical oxidation of hydrogen peroxide at platinum electrodes, Part 1: An adsorption–controlled mechanism, Electrochim. Acta, 1998, vol. 43, p. 579.

    Article  CAS  Google Scholar 

  36. Katsounaros, I., Schneider, W.B., Meier, J.C., Benedikt, U., Biedermann, P.U., Auer, A.A., and Mayrhofer, K.J.J., Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 7384.

    Article  CAS  Google Scholar 

  37. Noël, J.M., Latus, A., Lagrost, C., Volanschi, E., and Hapiot, P., Evidence for OH radical production during electrocatalysis of oxygen reduction on Pt surfaces: consequences and application, J. Am. Chem. Soc., 2012, vol. 134, p. 2835.

    Article  Google Scholar 

  38. Gómez-Marín, A.M., Schouten, K.J.P., Koper, M.T.M., and Feliu, J.M., Interaction of hydrogen peroxide with a Pt(111) electrode, Electrochem. Commun., 2012, vol. 22, p. 153.

    Article  Google Scholar 

  39. Katsounaros, I., Schneider, W.B., Meier, J.C., Benedikt, U., Biedermann, P.U., Cuesta, A., Auer, A.A., and Mayrhofer, K.J.J., The impact of spectator species on the interaction of H2O2 with platinum–implications for the oxygen reduction reaction pathways, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 8058.

    Article  CAS  Google Scholar 

  40. Sitta, E., Gómez-Marín, A.M., Aldaz, A., and Feliu, J.M., Electrocatalysis of H2O2 reduction/oxidation at model platinum surfaces, Electrochem. Commun., 2013, vol. 33, p. 39.

    Article  CAS  Google Scholar 

  41. Clavilier, J., Armand, D., Sun, S., and Petit, M., Electrochemical adsorption behavior of platinum stepped surfaces in sulphuric acid solutions, J. Electroanal. Chem., 1986, vol. 205, p. 267.

    Article  CAS  Google Scholar 

  42. Rodes, A., Herrero, E., Feliu, J.M., and Aldaz, A., Structure sensitivity of irreversibly adsorbed tin on gold single-crystal electrodes in acid media, J. Chem. Soc. Faraday. Trans., 1996, vol. 92, p. 3769.

    Article  CAS  Google Scholar 

  43. Korzeniewsky, C., Climent, V., and Feliu, J.M., Electrochemistry at platinum single crystal electrodes, in Electroanalytical Chemistry, A Series of Advances, vol. 24, Chap. 2, Bard, A.J. and Zoski, C.G., Eds., CRC Press, 2012, p. 75.

    Google Scholar 

  44. Martínez-Hincapié, R., Sebastián-Pascual, P., Climent, V., and Feliu, J.M., Exploring the interfacial neutral pH region of Pt(111) electrodes, Electrochem. Commun., 2015, vol. 58, p. 62.

    Article  Google Scholar 

  45. Angerstein-Kozlowska, H., Conway, B.E., Hamelin, A., and Stoicoviciu, L., Elementary steps of electrochemical oxidation of single-crystal planes of Au 2: A chemical and structural basis of oxidation of the (111) plane, J. Electroanal. Chem., 1987, vol. 228, p. 429.

    Article  CAS  Google Scholar 

  46. Clavilier, J. and Huong, C.N.V., Etude de l’interface de l’or polycristallin Au contact de solutions aqueuses de perchlorate de potassium et d’acide perchlorique, J. Electroanal. Chem., 1977, vol. 80, p. 101.

    Article  CAS  Google Scholar 

  47. Hamelin, A., Study of the (210) face of gold in aqueous solutions, J. Electroanal. Chem., 1982, vol. 138, p. 395.

    Article  CAS  Google Scholar 

  48. Hamelin, A., Borkowska, Z., and Stafiej, J., A double layer study of the (210) and (111) faces of gold in aqueous NaBF4 solutions, J. Electroanal. Chem., 1985, vol. 189, p. 85.

    Article  CAS  Google Scholar 

  49. Orlik, M. and Galus, Z., Electrochemistry of Gold, in Encyclopedia of Electrochemistry, Wiley-Vch, 2007, p. 839.

    Google Scholar 

  50. Lachenwitzer, A., Li, N., and Lipkowski, J., Determination of the acid dissociation constant for bisulfate adsorbed at the Pt(111) electrode by subtractively normalized interfacial Fourier transform infrared spectroscopy, J. Electroanal. Chem., 2002, vol. 532, p. 85.

    Article  CAS  Google Scholar 

  51. Nart, F.C., Iwasita, T., and Weber, M., Vibrational spectroscopy of adsorbed sulfate on Pt(111), Electrochim. Acta, 1994, vol. 39, p. 961.

    Article  CAS  Google Scholar 

  52. Cahan, D. and Villullas, H.M., The hanging meniscus rotating disk (HMRD), J. Electroanal. Chem., 1991, vol. 307, p. 263.

    Article  CAS  Google Scholar 

  53. Sotto, M., Oxydation anodique de l’or partie I. Conditions expiérimentales. Prétraitement anodique. Evolution de la surface activée, J. Electroanal. Chem., 1976, vol. 69, p. 229.

    Article  CAS  Google Scholar 

  54. Angerstein-Kozlowska, H., Conway, B.E., Hamelin, A., and Stoicoviciu, L., Elementary steps of electrochemical oxidation of single-crystal planes of Au 1: Chemical basis of processes involving geometry of anions and the electrode surfaces, Electrochim. Acta, 1986, vol. 31, p. 1051.

    Article  CAS  Google Scholar 

  55. Kolb, D.M. and Schneider, J., Surface reconstruction in electrochemistry: Au(100)-(5x20), Au(111)-(1x23) and Au(110)-(1x2), Electrochim. Acta, 1986, vol. 31, p. 929.

    Article  CAS  Google Scholar 

  56. Ferro, C.M., Calandra, A.J., and Arvia, A.J., Voltammetric observations of the various stages related to the formation and electrochemical reduction of the anodic oxide layer on gold in acid aqueous solutions, J. Electroanal. Chem. Interfacial Electrochem., 1974, vol. 55, p. 291.

    Article  CAS  Google Scholar 

  57. Sotto, M., Oxydation anodique de l’or partie III. Étude de la formation du film d’oxyde par la méthode de chronoampérométrie a variation liniéaire de potentiel, J. Electroanal. Chem., 1976, vol. 72, p. 287.

    Article  CAS  Google Scholar 

  58. Nieto, F.J.R., Andreasen, G., Martins, M.E., Castez, F., Salvarezza, R.C., and Arvia, A.J., Scanning tunneling microscopy, voltammetry, and X-ray photoelectron spectroscopy study of the early stages of electrochemical faceting of gold(111) in aqueous sulfuric and perchloric acid, J. Phys. Chem. B, 2003, vol. 107, p. 11452.

    Article  Google Scholar 

  59. Pasquale, M.A., Nieto, F.J.R., and Arvia, A.J., In situ scanning tunneling microscopy topography changes of gold(111) in aqueous sulfuric acid produced by electrochemical surface oxidation and reduction and relaxation phenomena, Surf. Rev. Lett., 2008, vol. 15, p. 847.

    Article  CAS  Google Scholar 

  60. Zhumaev, U., Rudnev, A.V., Li, J.-F., Kuzume, A., Vu, T.-H., and Wandlowski, T., Electro-oxidation of Au(111) in contact with aqueous electrolytes: New insight from in situ vibration spectroscopy, Electrochim. Acta, 2013, vol. 112, p. 853.

    Article  CAS  Google Scholar 

  61. Itaya, K., Sugawara, S., Sashikata, K., and Furuya, N., In situ scanning tunneling microscopy of platinum(111) surface with the observation of monatomic steps, J. Vacuum Sci. Tech. A: Vacuum Surf. Films, 1990, vol. 8, p. 515.

    Article  CAS  Google Scholar 

  62. Kondo, T., Morita, J., Hanaoka, K., Takakusagi, S., Tamura, K., Takahasi, M., Mizuki, J.I., and Uosaki, K., Structure of Au(111) and Au(100) single-crystal electrode surfaces at various potentials in sulfuric acid solution determined by in situ surface X-ray scattering, J. Phys. Chem. C, 2007, vol. 111, p. 13197.

    Article  CAS  Google Scholar 

  63. Sotto, M., Oxydation anodique de l’or partie II: Étude de la réduction du film d’oxyde formé anodiquement par la méthode de chronoampérométrie variation lineaire de potentiel, J. Electroanal. Chem., 1976, vol. 70, p. 291.

    Article  CAS  Google Scholar 

  64. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: John Wiley and Sons, 2001.

    Google Scholar 

  65. Zhumaev, U.E., Lai, A.S., Pobelov, I.V., Kuzume, A., Rudnev, A.V., and Wandlowski, T., Quantifying perchlorate adsorption on Au(111) electrodes, Electrochim. Acta, 2014, vol. 146, p. 112.

    Article  CAS  Google Scholar 

  66. Hribar, B., Southall, N.T., Vlachy, V., and Dill, K.A., How ions affect the structure of water, J. Am. Chem. Soc., 2002, vol. 124, p. 12302.

    Article  CAS  Google Scholar 

  67. Garcia-Araez, N., Rodriguez, P., Bakker, H.J., and Koper, M.T.M., Effect of the surface structure of gold electrodes on the coadsorption of water and anions, J. Phys. Chem. C, 2012, vol. 116, p. 4786.

    Article  CAS  Google Scholar 

  68. Berná, A., Climent, V., and Feliu, J.M., New understanding of the nature of OH adsorption on Pt(111) electrodes, Electrochem. Commun., 2007, vol. 9, p. 2789.

    Article  Google Scholar 

  69. Vesovic, V., Anastasijevic, N., and Adzic, R.R., Rotating disk electrode: A re-examination of some kinetic criteria with a special reference to oxygen reduction, J. Electroanal. Chem., 1987, vol. 218, p. 53.

    Article  CAS  Google Scholar 

  70. Roberts, J.G., Voinov, M.A., Schmidt, A.C., Smirnova, T.I., and Sombers, L.A., The hydroxyl radical is a critical intermediate in the voltammetric detection of hydrogen peroxide, J. Am. Chem. Soc., 2016, vol. 138, p. 2516.

    Article  CAS  Google Scholar 

  71. Li, X., Heryadi, D., and Gewirth, A.A., Electroreduction activity of hydrogen peroxide on Pt and Au electrodes, Langmuir, 2005, vol. 21, p. 9251.

    Article  CAS  Google Scholar 

  72. Ataka, K., Yotsuyanagi, T., and Osawa, M., Potentialdependent reorientation of water molecules at an electrode/ electrolyte interface studied by surface-enhanced infrared absorption spectroscopy, J. Phys. Chem. B, 1996, vol. 100, p. 10664.

    Article  CAS  Google Scholar 

  73. Ataka, K. and Osawa, M., In situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solutions, Langmuir, 1998, vol. 14, p. 951.

    Article  CAS  Google Scholar 

  74. Sitta, E. and Feliu, J.M., The role of PtOH on H2O2 interactions with platinum surfaces in an electrochemical environment, ChemElectroChem, 2014, vol. 1, p. 55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Gómez-Marín.

Additional information

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 9, pp. 1153–1168.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Marín, A.M., Boronat, A. & Feliu, J.M. Electrocatalytic oxidation and reduction of H2O2 on Au single crystals. Russ J Electrochem 53, 1029–1041 (2017). https://doi.org/10.1134/S1023193517090063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517090063

Keywords

Navigation