Skip to main content
Log in

Investigation on the current efficiency of Ni/graphite powders fabricated by electroplating

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In order to improve the cathodic current efficiency of electroplating for nickel on graphite powders, the influence of temperatures and current densities on the cathodic current efficiency was studied. Meanwhile, the effects of composition in the plating solution were investigated through polarization curves of plating solution. The results showed that the optimal cathodic current efficiency occurred with an electrode area ratio of 1.0 between the anode and cathode at a current density of −9...−12 A dm−2 at 55°C. Nickel coated graphite (Ni/graphite) powders with 60 wt % nickel were produced by electrodeposition for 30 min under the intermittent stirring. The characterization results of powders with SEM and EDS exhibited that high nickel coverage and uniform plating coating Ni/graphite powders were fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, Z.L., Chen, Z.H., and Xia, J.T., Trans. Nonferrous. Met. Soc. China., 2007, vol. 17, p. 1060.

    Google Scholar 

  2. Yasar, I., Canakci, A., and Arslan, F., Tribol. Int., 2007, vol. 40, p. 1381.

    Article  CAS  Google Scholar 

  3. Liang, T.X., Guo, W.L., and Yan, Y.H., Int. J. Adhes. Adhes., 2008, vol. 28, p. 55.

    Article  CAS  Google Scholar 

  4. Fan, Y., Yang, H., and Liu, X., J. Alloy. Compd., 2008, vol. 461, p. 490.

    Article  CAS  Google Scholar 

  5. Chung, D.D.L., Carbon., 2001, vol. 39, p. 279.

    Article  CAS  Google Scholar 

  6. Sharma, A., Saito, I., and Nakagawa, H., Fuel., 2007, vol. 86, p. 915.

    Article  CAS  Google Scholar 

  7. Floner, D. and Geneste, F., Electrochem. Commun., 2007, vol. 9, p. 2271.

    Article  CAS  Google Scholar 

  8. Hsieh, C.T., Chou, Y.W., and Lin, J.Y, Int. J. Hydrogen. Energ., 2007, vol. 32, p. 3457.

    Article  CAS  Google Scholar 

  9. Shi, L.H., Wang, Q., and Li, H., J. Power. Sources, 2001, vol. 102, p. 60.

    Article  CAS  Google Scholar 

  10. Sunny, V., Sakthi Kumar, D., and Yoshida, Y., Carbon., 2010, vol. 48, p. 1643.

    Article  CAS  Google Scholar 

  11. Luo, K., Shi, N.L., and Cong, H., J. Solid. State. Electr., 2006, vol. 10, p. 1003.

    Article  CAS  Google Scholar 

  12. Sun, W.F., Chen, G.H., and Zheng, L.L., J. Scripta. Mater., 2008, vol. 59, p. 1031.

    Article  CAS  Google Scholar 

  13. Liu, Q.M., Zhang, L.T., and Cheng, L.F., Vacuum., 2010, vol. 85, p. 332.

    Article  CAS  Google Scholar 

  14. Wang, W.B., Fu, Y.Y., and Xia, A., J. Alloy. Compd., 2012, vol. 518, p. 6.

    Article  Google Scholar 

  15. Shi, Z.Y., Wang, X.Z., and Ding, Z.M., Appl. Surf Sci., 1999, vol. 140, p. 106.

    Article  CAS  Google Scholar 

  16. Li, Q., Zeng, G.Z., and Zhao, W.F., Synthetic. Met., 2010, vol. 160, p. 200.

    Article  CAS  Google Scholar 

  17. Palaniappa, M., Veera Babu, G., and Balasubramanian, K., Mater. Sci. Eng. A, 2007, vol. 471, p. 165.

    Article  Google Scholar 

  18. Pavlenko, V.I. and Yas’, D.S., Powder. Metall. Met. C+, 1976, vol. 15, p. 89.

    Article  Google Scholar 

  19. Wu, B., Yu, X.H., and Zhang, B., Surf. Coat. Tech., 2008, vol. 202, p. 1975.

    Article  CAS  Google Scholar 

  20. Lapinski, J., Pletcher, D., and Walsh, F.C., Surf. Coat. Tech., 2011, vol. 205, p. 5205.

    Article  CAS  Google Scholar 

  21. Yu, G., Huang, X.H., and Zou, C., Adv. Powder. Technol., 2012, vol. 23, p. 16.

    Article  CAS  Google Scholar 

  22. Tu, C.J., Chen, D., and Chen, Z.H., Tribol. Lett., 2008, vol. 31, p. 91.

    Article  CAS  Google Scholar 

  23. Pestov, K.V. and Bogdashev, V.F., Powder. Metall. Met. C+, 1991, vol. 30, p. 604.

    Google Scholar 

  24. Ming-Der Ger, Mater. Chem. Phys., 2004, vol. 87, p. 67.

    Article  Google Scholar 

  25. Real, S.G., Barbosa, M.R., and Vilche, J.R., J. Electrochem. Soc., 1990, vol. 137, p. 1696.

    Article  CAS  Google Scholar 

  26. Arya, C.W. and Vassie, P.R., Cement. Concrete. Res., 1995, vol. 25, p. 989.

    Article  CAS  Google Scholar 

  27. Li, D., Electrochemical Principle, Beijing: Beijing University of Aeronautics and Astronautics Press, 2008, p. 281.

    Google Scholar 

  28. Ibrahim, M.A.M., J. Appl. Electrochem., 2006, vol. 36, p. 295.

    Article  CAS  Google Scholar 

  29. Fricoteaux, P. and Rousse, C., J. Electroanal. Chem., 2008, vol. 612, p. 9.

    Article  CAS  Google Scholar 

  30. Cooper, M. and Botte, G.G., J. Mater. Sci., 2006, vol. 41, p. 5608.

    Article  CAS  Google Scholar 

  31. Eliaz, N., Sridhar, T.M., and Gileadi, E., Electrochim. Acta., 2005, vol. 50, p. 2893.

    Article  CAS  Google Scholar 

  32. Krishnan, K.H., John, S., and Srinivasan, K.N., Metal. Mater. Trans. A, 2006, vol. 37, p. 1917.

    Article  Google Scholar 

  33. Chu, Y.J., Yu, G., and Hu, B.N., Adv. Powder. Technol., 2014, vol. 25, p. 477.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Yu or Bonian Hu.

Additional information

Published in Russian in Elektrokhimiya, 2015, Vol. 51, No. 3, pp. 280–287.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Ma, T., Yu, G. et al. Investigation on the current efficiency of Ni/graphite powders fabricated by electroplating. Russ J Electrochem 51, 236–243 (2015). https://doi.org/10.1134/S1023193515030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515030040

Keywords

Navigation