Skip to main content
Log in

Characteristics of Dagestan Local Goat Subpopulations (Capra hircus) Based on the Analysis of the Complete Mitogenome Polymorphism

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

For the first time, the analysis of polymorphism of complete mitochondrial genomes was performed in three Dagestan local goat populations (n = 37), which were characterized by high genetic and haplotype diversity. We found that 90.88% of the total genetic variability was due to intragroup differences and 4.86% was due to intergroup differences. For the studied sample of goats, significant negative values of the Tajima’s D and Fu’s Fs neutrality indices were calculated (P < 0.05). We performed a phylogenetic analysis using the nucleotide sequences of domestic goats and bezoars belonging to different haplogroups. Our study revealed that all studied samples of Dagestan Local goats belonged to haplogroup A, which is the most frequent one in domestic goats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Novopashina, S.I., Sannikov, M.Yu., Khatataev, S.A., et al., Sostoyaniye i perspektivnyye napravleniya uluchsheniya geneticheskogo potentsiala melkogo rogatogo skota: nauch. analit. obzor (State of the Art and Promising Directions of Improving the Genetic Potential of Small Cattle: Research and Analytical Review), Moscow: Rosinformagrotekh, 2019.

  2. Khaiitov, A.Kh., Stanishevskaya, O.N., and Safarov, T.S., Biological and economically important traits of local goats, Izv. S.-Peterb. Gos. Agrar. Univ., 2016, no. 45, pp. 139—145.

  3. Musalaev, Kh.Kh., State of the art and the development prospects of goat breeding in Dagestan, Gorn. Sel’sk. Khoz., 2015, no. 1, pp. 118—123.

  4. Lebel’, L.D. and Zelenskii, Yu.G., Kozovodstvo i kozy Dagestana (Goat Breeding and Goats of Dagestan), Pyatigorsk: Sevkavvedizdat, 1936.

  5. Kumar, A., Rout, P.K., Mandal, A., and Roy, R., Identification of the CSN1S1 allele in Indian goats by the PCR-RFLP method, Animal, 2007, vol. 1, no. 8, pp. 1099—1104. https://doi.org/10.1017/S1751731107000444

    Article  CAS  PubMed  Google Scholar 

  6. Li, M.J., Zhang, C.M., Lan, X.Y., et al., Analysis of POU1F1 gene DdeI polymorphism in Chinese goats, Genet. Mol. Res., 2016, vol. 15, no. 1, p. 15017747. https://doi.org/10.4238/gmr.15017747

    Article  CAS  PubMed  Google Scholar 

  7. Naderi, S., Rezaei, H.-R., Taberlet, P., et al., Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity, PLoS One, 2007, no. 2. e1012. https://doi.org/10.1371/journal.pone.0001012

  8. Zhao, Y., Zhao, R., Zhao, Z., et al., Genetic diversity and molecular phylogeography of Chinese domestic goats by large-scale mitochondrial DNA analysis, Mol. Biol. Rep., 2014, vol. 41, no. 6, pp. 3695—3704. https://doi.org/10.1007/s11033-014-3234-2

    Article  CAS  PubMed  Google Scholar 

  9. Colli, L., Lancioni, H., Cardinali, I., et al., Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability, BMC Genomics, 2015, no. 16, p. 1115. https://doi.org/10.1186/s12864-015-2342-2

  10. Tarekegn, G.M., Tesfaye, K., Mwai, O.A., et al., Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats, Ecol. Evol., 2018, vol. 8, no. 3, pp. 1543—1553. https://doi.org/10.1002/ece3.3710

    Article  PubMed  PubMed Central  Google Scholar 

  11. Diwedi, J., Singh, A.W., Ahlawat, S., et al., Comprehensive analysis of mitochondrial DNA based genetic diversity in Indian goats, Gene, 2020, no. 756, p. 144910. https://doi.org/10.1016/j.gene.2020.144910

  12. Voronkova, V.N., Piskunov, A.K., Nikolaeva, E.A., et al., Haplotype diversity of Mongolian and Tuvan goat breeds (Capra hircus) based on mtDNA and Y‑chromosome polymorphism, Russ. J. Genet., 2021, vol. 57, no. 10, pp. 1170–1178. https://doi.org/10.1134/S102279542110015X

    Article  CAS  Google Scholar 

  13. Wang, G.Z., Chen, S.S., Chao, T.L., et al., Analysis of genetic diversity of Chinese dairy goats via microsatellite markers, J. Anim. Sci., 2017, vol. 95, no. 5, pp. 2304—2313. https://doi.org/10.2527/jas.2016.1029

    Article  CAS  PubMed  Google Scholar 

  14. Menezes, M., Martinez, A.M., Filho, E., et al., Diversity analysis and genetic relationships among local Brazilian goat breeds using SSR markers, Animals, 2020, vol. 10, no. 10, p. 1842. https://doi.org/10.3390/ani10101842

    Article  PubMed Central  Google Scholar 

  15. Selionova, M.I., Aibazov, M.M., Mamontova, T.V., et al., 42 Genetic differentiation of Russian goats and wild relatives based on microsatellite loci, J. Anim. Sci., 2020, vol. 98, suppl. 4, pp. 19—20. https://doi.org/10.1093/jas/skaa278.037

    Article  PubMed Central  Google Scholar 

  16. Beketov, S.V., Piskunov, A.K., Voronkova, V.N., et al., Genetic diversity and phylogeny of fleece-bearing goats of Central and Middle Asia, Russ. J. Genet., 2021, vol. 57, no. 7, pp. 816—824. https://doi.org/10.1134/S1022795421070036

    Article  CAS  Google Scholar 

  17. Brito, L.F., Kijas, J.W., Ventura, R.V., et al., Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers, BMC Genomics, 2017, vol. 18, no. 1, p. 229. https://doi.org/10.1186/s12864-017-3610-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Burren, A., Neuditschko, M., Signer-Hasler, H., et al., Genetic diversity analyses reveal first insights into breed-specific selection signatures within Swiss goat breeds, Anim. Genet., 2016, vol. 47, no. 6, pp. 727—739. https://doi.org/10.1111/age.12476

    Article  CAS  PubMed  Google Scholar 

  19. Colli, L., Milanesi, M., Talenti, A., et al., Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes, Genet. Sel. Evol., 2018, vol. 50, no. 1, p. 58. https://doi.org/10.1186/s12711-018-0422-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deniskova, T.E., Dotsev, A.V., Selionova, M.I., et al., SNP-based genotyping provides insight into the West Asian origin of Russian local goats, Front. Genet., 2021, no. 12, p. 708740. https://doi.org/10.3389/fgene.2021.708740

  21. Piras, D., Doro, M.G., Casu, G., et al., Haplotype affinities resolve a major component of goat (Capra hircus) mtDNA D-loop diversity and reveal specific features of the Sardinian stock, PLoS One, 2012, vol. 7, no. 2. e30785. https://doi.org/10.1371/journal.pone.0030785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tabata, R., Kawaguchi, F., Sasazaki, S., et al., The Eurasian steppe is an important goat propagation route: a phylogeographic analysis using mitochondrial DNA and Y-chromosome sequences of Kazakhstani goats, Anim. Sci. J., 2019, vol. 90, no. 3, pp. 317—322. https://doi.org/10.1111/asj.13144

    Article  CAS  PubMed  Google Scholar 

  23. Fernández, H., Hughes, S., Vigne, J.-D., et al., Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, no. 42, pp. 15375—15379. https://doi.org/10.1073/pnas.0602753103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Langmead, B. and Salzberg, S., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, no. 9, pp. 357—359. https://doi.org/10.1038/nmeth.1923

  25. Danecek, P., Bonfield, J.K., Liddle, J., et al., Twelve years of SAMtools and BCFtools, Giga Sci., 2021, vol. 10, no. 2. giab008. https://doi.org/10.1093/gigascience/giab008

  26. Hassanin, A., Bonillo, C., Nguyen, B.X., and Cruaud, C., Comparisons between mitochondrial genomes of domestic goat (Capra hircus) reveal the presence of numts and multiple sequencing errors, Mitochondrial DNA, 2010, vol. 21, nos. 3—4, pp. 68—76. https://doi.org/10.3109/19401736.2010.490583

    Article  CAS  PubMed  Google Scholar 

  27. Bernt, M., Donath, A., Jühling, F., et al., MITOS: improved de novo metazoan mitochondrial genome annotation, Mol. Phylogenet. Evol., 2013, vol. 69, no. 2, pp. 313—319. https://doi.org/10.1016/j.ympev.2012.08.023

    Article  PubMed  Google Scholar 

  28. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792—1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585—595. https://doi.org/10.1093/genetics/123.3.585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu, Y.-X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection, Genetics, 1997, vol. 147, pp. 915—925. https://doi.org/10.1093/genetics/147.2.915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., et al., DnaSP 6: DNA sequence polymorphism analysis of large data sets, Mol. Biol. Evol., 2017, vol. 34, no. 12, pp. 3299—3302. https://doi.org/10.1093/molbev/msx248

    Article  CAS  PubMed  Google Scholar 

  33. Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  34. Lanfear, R., Frandsen, P.B., Wright, A.M., et al., PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses, Mol. Biol. Evol., 2017, vol. 34, no. 3, pp. 772—773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  PubMed  Google Scholar 

  35. Akaike, H., A new look at the statistical model identification, IEEE Trans Auto Control, 1974, no. 19, pp. 716—723. https://doi.org/10.1109/TAC.1974.1100705

  36. Bandelt, H.J., Forster, P., and Röhl, A., Median-joining networks for inferring intraspecific phylogenies, Mol. Biol. Evol., 1999, vol. 16, pp. 37—48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

    Article  CAS  PubMed  Google Scholar 

  37. Leigh, J.W. and Bryant, D., Popart: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110—1116. https://doi.org/10.1111/2041-210X.12410

    Article  Google Scholar 

  38. Ronquist, F., Teslenko, M., van der Mark, P., et al., MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539—542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  39. http://tree.bio.ed.ac.uk/software/figtree/.

  40. Hassanin, A., Ropiquet, A., Couloux, A., and Cruaud, C., Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae), J. Mol. Evol., 2009, vol. 68, no. 4, pp. 293—310. https://doi.org/10.1007/s00239-009-9208-7

    Article  CAS  PubMed  Google Scholar 

  41. Md Naim, D., Kamal, N., and Mahboob, S., Population structure and genetic diversity of Aedes aegypti and Aedes albopictus in Penang as revealed by mitochondrial DNA cytochrome oxidase I, Saudi J. Biol. Sci., 2020, vol. 27, no. 3, pp. 953—967. https://doi.org/10.1016/j.sjbs.2020.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deniskova, T., Bakoev, N., Dotsev, A., et al., Maternal origins and haplotype diversity of seven Russian goat populations based on the D-loop sequence variability, Animals, 2020, vol. 10, no. 9, p. 1603. https://doi.org/10.3390/ani10091603

    Article  PubMed Central  Google Scholar 

Download references

Funding

The work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-15-2021-1037 (internal no. 15.BRC.21.0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. E. Deniskova or N. A. Zinovieva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The authors declare that they have no conflict of interest. All applicable international, national, and/or institutional guidelines for animal care and use have been followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniskova, T.E., Dotsev, A.V., Selionova, M.I. et al. Characteristics of Dagestan Local Goat Subpopulations (Capra hircus) Based on the Analysis of the Complete Mitogenome Polymorphism. Russ J Genet 58, 988–996 (2022). https://doi.org/10.1134/S1022795422050040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422050040

Keywords:

Navigation