Skip to main content
Log in

Evolution of the Mitochondrial Genome in Mammals Living at High Altitude: New Insights from a Study of the Tribe Caprini (Bovidae, Antilopinae)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Organisms living at high altitude are exposed to severe environmental stress associated with decreased oxygen pressure, cold temperatures, increased levels of UV radiation, steep slopes, and scarce food supplies, which may have imposed important selective constraints on the evolution of the mitochondrial genome. Within mammals, the tribe Caprini is of particular interest for studying the evolutionary effects of life at high altitude, as most species live in mountain regions, where they developed morphological and physiological adaptations for climbing. In this report, we analyzed the complete mitochondrial genome of 24 ruminants, including 20 species of Caprini. The phylogenetic analyses based on 16,117 nucleotides suggested the existence of a new large clade, here named subtribe Caprina, containing all genera, but Pantholops (Pantholopina), Capricornis, Naemorhedus, and Ovibos (Ovibovina). The alignment of the control region showed that all Caprini have between two and four tandem repeats of ~75 bp in the RS2 region, and that several of these copies emerged from recent and independent duplication events. We proposed therefore that the maintenance of at least two RS2 repeats in the control region of Caprini is positively selected, probably for producing a higher number of D-loop strands 3′-ending at different locations. The analyses of base composition at third-codon positions of protein-coding genes revealed that Caprini have the highest percentage of A nucleotide and the lowest percentage of G nucleotide, a pattern which suggests increased rates of cytosine deamination (C→T transitions) on the H strand of mtDNA. Two nonexclusive hypotheses related to high-altitude life can explain such a mutational pattern: more severe oxidative stress (ROS) and higher metabolic rates. By comparing the relative rates of nonsynonymous and synonymous substitutions in protein-coding genes, we identified that Caprini have higher levels of adaptive variation in the ATPase complex. In addition, we detected several changes in mitochondrial genes that should be tested for their potential role in mountain adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Annex BH, Williams RS (1990) Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol Cell Biol 10:5671–5678

    PubMed  CAS  Google Scholar 

  • Blagojević DP (2007) Antioxidant systems in supporting environmental and programmed adaptations to low temperatures. Cryo Lett 28:137–150

    Google Scholar 

  • Blier PU, Dufresne F, Burton RS (2001) Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 17:400–406

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen D, Clayton DA (1978) Mechanism of mitochondrial DNA replication in mouse L-cells: kinetics of synthesis and turnover of the initiation sequence. J Mol Biol 119:49–68

    Article  PubMed  CAS  Google Scholar 

  • Brown TA, Clayton DA (2002) Release of replication termination controls mitochondrial DNA copy number after depletion with 2’, 3’-dideoxycytidine. Nucleic Acids Res 30:2004–2010

    Article  PubMed  CAS  Google Scholar 

  • Buroker NE, Brown JR, Gilbert TA, O’Hara PJ, Beckenbach AT, Thomas WK, Smith MJ (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124:157–163

    PubMed  CAS  Google Scholar 

  • Clanton TL (2007) Hypoxia-induced reactive oxygen species formation in skeletal muscle. J Appl Physiol 102:2379–2388

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  PubMed  CAS  Google Scholar 

  • da Fonseca RR, Johnson WE, O’Brien SJ, Ramos MJ, Antunes A (2008) The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9:119

    Article  PubMed  Google Scholar 

  • Di Rocco F, Parisi G, Zambelli A, Vida-Rioja L (2006) Rapid evolution of cytochrome c oxidase subunit II in camelids (Tylopoda, Camelidae). J Bioenerg Biomembr 38:293–297

    Article  PubMed  Google Scholar 

  • Doda JN, Wright CT, Clayton DA (1981) Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci USA 78:6116–6120

    Article  PubMed  CAS  Google Scholar 

  • Dosek A, Ohno H, Acs Z, Taylor AW, Radak Z (2007) High altitude and oxidative stress. Respir Physiol Neurobiol 158:128–131

    Article  PubMed  CAS  Google Scholar 

  • Douzery E, Randi E (1997) The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 14:1154–1166

    PubMed  CAS  Google Scholar 

  • Elson JL, Turnbull DM, Howell N (2004) Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet 74:229–238

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699

    Article  PubMed  CAS  Google Scholar 

  • Fish J, Raule N, Attardi G (2004) Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science 306:2098–2101

    Article  PubMed  CAS  Google Scholar 

  • Foran DR, Hixson JE, Brown WM (1998) Comparisons of ape and human sequences that regulate mitochondrial DNA transcription and D-loop DNA synthesis. Nucleic Acids Res 16:5841–5861

    Article  Google Scholar 

  • Frederico LA, Kunkel TA, Shaw BR (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry. 29:2532–2537

    Article  PubMed  CAS  Google Scholar 

  • Freeman AR, MacHugh DE, McKeown S, Walzer C, McConnell DJ, Bradley DG (2001) Sequence variation in the mitochondrial DNA control region of wild African cheetahs (Acinonyx jubatus). Heredity 86:355–362

    Article  PubMed  CAS  Google Scholar 

  • Gatesy J, Amato G, Vrba E, Schaller G, DeSalle R (1997) A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol Phylogenet Evol 7:303–319

    Article  PubMed  CAS  Google Scholar 

  • Gelfi C, De Palma S, Ripamonti M, Eberini I, Wait R, Bajracharya A, Marconi C, Schneider A, Hoppeler H, Cerretelli P (2004) New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB J 18:612–614

    PubMed  CAS  Google Scholar 

  • Gilbert C, Ropiquet A, Hassanin A (2006) Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Mol Phylogenet Evol 40:101–117

    Article  PubMed  CAS  Google Scholar 

  • Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet 20:578–585

    Article  PubMed  CAS  Google Scholar 

  • Groves P, Shields GF (1996) Phylogenetics of the Caprinae based on cytochrome b sequence. Mol Phylogenet Evol 5:467–476

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hansen JM, Go YM, Jones DP (2006) Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 46:215–234

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A (2006) Phylogeny of Arthropoda inferred from mitochondrial sequences: strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol Phylogenet Evol 38:100–116

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Douzery EJ (1999) The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 13:227–243

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Ropiquet A (2007) Resolving a zoological mystery: the kouprey is a real species. Proc Biol Sci 274:2849–2855

    Article  PubMed  CAS  Google Scholar 

  • Hassanin A, Pasquet E, Vigne JD (1998a) Molecular systematics of the subfamily Caprinae (Artiodactyla, Bovidae) as determined from cytochrome b sequences. J Mammal Evol 5:217–236

    Article  Google Scholar 

  • Hassanin A, Lecointre G, Tillier S (1998b) The ‘evolutionary signal’ of homoplasy in protein-coding gene sequences and its phylogenetic consequences for weighting in phylogeny. CR Acad Sci III 321:611–620

    CAS  Google Scholar 

  • Hassanin A, Léger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inference. Syst Biol 54:277–298

    Article  PubMed  Google Scholar 

  • Heusner AA (1991) Size and power in mammals. J Exp Biol 160:25–54

    PubMed  CAS  Google Scholar 

  • Hiendleder S, Lewalski H, Wassmuth R, Janke A (1998) The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. J Mol Evol 47:441–448

    Article  PubMed  CAS  Google Scholar 

  • Hocquette JF, Tesseraud S, Cassar-Malek I, Chilliard Y, Ortigues-Marty I (2007) Responses to nutrients in farm animals: implications for production and quality. Animal 1:1297–1313

    Google Scholar 

  • Hoelzel AR, Lopez JV, Dover GA, O’Brien SJ (1994) Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores. J Mol Evol 39:191–199

    PubMed  CAS  Google Scholar 

  • Holt IJ, He J, Mao CC, Boyd-Kirkup JD, Martinsson P, Sembongi H, Reyes A, Spelbrink JN (2007) Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion 7:311–321

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Vogt M, Weibel ER, Flück M (2003) Response of skeletal muscle mitochondria to hypoxia. Exp Physiol 88:109–119

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark KJ, Shields GF, Udina IG, Bowyer RT, Danilkin AA, Schwartz CC (2002) Mitochondrial phylogeography of moose (Alces alces): late pleistocene divergence and population expansion. Mol Phylogenet Evol 22:375–387

    Article  PubMed  CAS  Google Scholar 

  • Ingman M, Gyllensten U (2007) Rate variation between mitochondrial domains and adaptive evolution in humans. Hum Mol Genet 16:2281–2287

    Article  PubMed  CAS  Google Scholar 

  • Kai Y, Miyako K, Muta T, Umeda S, Irie T, Hamasaki N, Takeshige K, Kang D (1999) Mitochondrial DNA replication in human T lymphocytes is regulated primarily at the H-strand termination site. Biochim Biophys Acta 1446:126–134

    PubMed  CAS  Google Scholar 

  • Kivisild T, Shen P, Wall DP, Do B, Sung R, Davis K, Passarino G, Underhill PA, Scharfe C, Torroni A, Scozzari R, Modiano D, Coppa A, de Knijff P, Feldman M, Cavalli-Sforza LL, Oefner PJ (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics 172:373–387

    Article  PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SD (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222

    Article  PubMed  Google Scholar 

  • Kow YW (2002) Repair of deaminated bases in DNA. Free Radic Biol Med 33:886–893

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Suzuki H, Onoue S, Suzuki S, Hattori N, Ozawa T (1995) Rat mitochondrial mtDNA-binding proteins to inter-specifically conserved sequences in the displacement loop region of vertebrate mtDNAs. Biochem Mol Biol Int 36:973–981

    PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  • Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Gao W, Gao Y, Tang S, Huang Q, Tan X, Chen J, Huang T (2008) Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion 8:352–357

    Article  PubMed  CAS  Google Scholar 

  • MacKay SL, Olivo PD, Laipis PJ, Hauswirth WW (1986) Template-directed arrest of mammalian mitochondrial DNA synthesis. Mol Cell Biol 6:1261–1267

    PubMed  CAS  Google Scholar 

  • Madsen CS, Ghivizzani SC, Hauswirth WW (1993) Protein binding to a single termination-associated sequence in the mitochondrial DNA D-loop region. Mol Cell Biol 13:2162–2171

    PubMed  CAS  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  PubMed  CAS  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–176

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Loshuertos R, Acin-Perez R, Fernandez-Silva P, Movilla N, Perez-Martos A, Rodriguez de Cord S, Gallardo ME, Enriquez JA (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  PubMed  CAS  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre. Uppsala University, Uppsala

    Google Scholar 

  • Parma P, Feligini M, Greeppi G, Enne G (2003) The complete nucleotide sequence of goat (Capra hircus) mitochondrial genome. Goat mitochondrial genome. DNA Seq 14:199–203

    PubMed  Google Scholar 

  • Piazena H (1996) The effect of altitude upon the solar UV-B and UV-A irradiance in the tropical Chilean Andes. Solar Energy 57:133–140

    Article  Google Scholar 

  • Rankinen T, Bray MS, Hagberg JM, Perusse L, Roth SM, Wolfarth B, Bouchard C (2006) The human gene map for performance and health-related fitness phenotypes: the 2005 update. Med Sci Sports Exerc 38:1863–1888

    Article  PubMed  Google Scholar 

  • Reyes A, Gissi C, Pesole G, Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15:957–966

    PubMed  CAS  Google Scholar 

  • Roberti M, Musicco C, Polosa PL, Milella F, Gadaleta MN, Cantatore P (1998) Multiple protein-binding sites in the TAS-region of human and rat mitochondrial DNA. Biochem Biophys Res Commun 243:36–40

    Article  PubMed  CAS  Google Scholar 

  • Ropiquet A, Hassanin A (2006) Hybrid origin of the Pliocene ancestor of wild goats. Mol Phylogenet Evol 41:395–404

    Article  PubMed  CAS  Google Scholar 

  • Ropiquet A, Hassanin A (2005a) Molecular phylogeny of caprines (Bovidae, Antilopinae): the question of their origin and diversification during the Miocene. J Zool Syst Evol Res 43:49–60

    Article  Google Scholar 

  • Ropiquet A, Hassanin A (2005b) Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol Phylogenet Evol 36:154–168

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Pesini D, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in Human mtDNA. Science 303:223–226

    Article  PubMed  CAS  Google Scholar 

  • Saccone C, Pesole G, Sbisá E (1991) The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol 33:83–91

    Article  PubMed  CAS  Google Scholar 

  • Savolainen P, Arvestad L, Lundeberg J (2000) MtDNA tandem repeats in domestic dogs and wolves: mutation mechanism studied by analysis of the sequence of imperfect repeats. Mol Biol Evol 17:474–488

    PubMed  CAS  Google Scholar 

  • Sun C, Kong QP, Zhang YP (2007) The role of climate in human mitochondrial DNA evolution: a reappraisal. Genomics 89:338–342

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (1993) PAUP: Phylogenetic Analysis Using Parsimony, version 311 Computer program. Distributed by Illinois Natural History Survey, Champaign

    Google Scholar 

  • Tanaka M, Ozawa T (1994) Strand asymetry in human mitochondrial DNA mutations. Genomics 22:327–335

    Article  PubMed  CAS  Google Scholar 

  • Torroni A, Miller JA, Moore LG, Zamudio S, Zhuang J, Droma T, Wallace DC (1994) Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol 93:189–199

    Article  PubMed  CAS  Google Scholar 

  • Ursing BM, Slack KE, Arnason U (2000) Subordinal artiodactyl relationships in the light of phylogenetic analysis of 12 mitochondrial protein-coding genes. Zool Scr 29:83–88

    Article  Google Scholar 

  • Vanderwall DE, Lui SM, Wu W, Turner CJ, Kozarich JW, Stubbe J (1997) A model of the structure of HOO-Co.bleomycin bound to d(CCAGTACTGG): recognition at the d(GpT) site and implications for double-stranded DNA cleavage. Chem Biol 4:373–387

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821

    Article  PubMed  CAS  Google Scholar 

  • White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci USA 100:4046–4049

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GS, Mayer F, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D-loop region of bat mitochondrial DNA. Genetics 146:1035–1048

    PubMed  CAS  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Xu SQ, Yang YZ, Zhou J, Jing GE, Chen YT, Wang J, Yang HM, Wang J, Yu J, Zheng XG, Ge RL (2005) A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii). Genom Proteom Bioinform 3:5–17

    CAS  Google Scholar 

  • Yamagata T, Namikawa T (1999) Sequence variation and evolution of the mitochondrial DNA control region in the musk shrew, Suncus murinus. Genes Genet Syst 74:257–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to the individuals who provided tissue samples: Alexis Lécu, Bruno Guffond, Céline Canler, Claire Rejaud, Françoise Hergueta-Claro, Géraldine Pothet, Gérard Dousseau, Jacob Mwanzia, Jacques Rigoulet, Jean-François Marjarie, Jean-Luc Berthier, Kevin Budsberg, Nhek Ratanapich, Nhim Thy, Nick Marx, Norin Chai, Perry S. Barboza, Samer Alasaad, Sheikh Zayed, Sir Bani Yas, Stéphane Ostrowski, Sylvie Laidebeure, and Vitaly Volobouev. This work was supported by the Muséum national d′Histoire naturelle (MNHN), CNRS, PPF ”Etat et structure phylogénétique de la biodiversité actuelle et fossile,” and “Consortium National de Recherche en Génomique.” It is part of agreement No. 2005/67 between the Genoscope and the MNHN on the project “Macrophylogeny of Life,” directed by Guillaume Lecointre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Hassanin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Appendix 1 (JPG 960 kb)

Supplementary Appendix 2 (JPG 636 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanin, A., Ropiquet, A., Couloux, A. et al. Evolution of the Mitochondrial Genome in Mammals Living at High Altitude: New Insights from a Study of the Tribe Caprini (Bovidae, Antilopinae). J Mol Evol 68, 293–310 (2009). https://doi.org/10.1007/s00239-009-9208-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9208-7

Keywords

Navigation