Skip to main content
Log in

Neurogenetics and neuroepigenetics

  • Reviews and Theoretical Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Behavioral genetics or “Neurogenetics,” is based on the evolutionary ideas of T. Dobzhansky on brain development and behavior. It continues with the “experimental genetics of higher nervous activity” of I. Pavlov and uses a comparative approach in the study of heredity and variation in behavioral manifestations, from Protozoa to humans. The study of the classical Pavlovian conditioned reflex in mutant Drosophila helped to identify the main types of memory and their evolutionary conservatism. Long-term memory defects are caused by mutations of the same genes as in mental retardation in humans, when signaling cascades intersecting with the cAMP-dependent pathway are damaged. The cascade of actin remodeling is also among these. The key enzyme, LIM-kinase 1, controls cognitive manifestations of the “genomic disease” Williams deletion syndrome. Its study resulted in the recognition of neuroepigenetics as an interface between the genome and environmental influences. Epigenetic factors of “variability”—DNA methylation, histone acetylation, and miRNA regulation—do not change the structure of the gene but its manifestations. Certain miRNAs have already been considered to be both biomarkers for neurodegenerative diseases and factors of the transgenerational transmission of the behaviorial properties of ancestors who experienced stress from adverse environmental influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuller, J.R. and Thompson, W.R., Behavior Genetics, New York: Wiley, 1960.

    Google Scholar 

  2. Galton, F., Hereditary Genius: Its Laws and Consequences, London: Macmillan, 1869.

    Book  Google Scholar 

  3. Korochkin, L.I. and Mikhailov, A.T., Vvedenie v neirogenetiku (Introduction to Neurogenetics), Moscow: Nauka, 2000.

    Google Scholar 

  4. Fuller, J.L., Comparative studies in behavioral genetics, Acta Genet. Stat. Med., 1957, vol. 7, no. 2, pp. 403–407.

    CAS  PubMed  Google Scholar 

  5. Fuller, J.L., Physiological and population aspects of behavior genetics, Am. Zool., 1964, vol. 4, pp. 101–109.

    CAS  PubMed  Google Scholar 

  6. Thompson, W.R., The inheritance and development of intelligence, Res. Publ. Assoc. Res. Nerv. Ment. Dis., 1954, vol. 33, pp. 209–231.

    CAS  PubMed  Google Scholar 

  7. Scott, J.P., Social genetics, Behav. Genet., 1977, vol. 7, pp. 327–346.

    Article  CAS  PubMed  Google Scholar 

  8. Niemi, R.R. and Thompson, W.R., Pavlovian excitation, internal inhibition, and their interaction with free operant avoidance as a function of age in rats, Dev. Psychobiol., 1980, vol. 13, pp. 61–76.

    Article  CAS  PubMed  Google Scholar 

  9. Ehrman, L, and Parsons, P A., Behavior, Genetics and Evolution, New York: McGraw Hill, 1981.

    Google Scholar 

  10. Mazing, R.A., Inheritance of oviposition selectivity in Drosophila melanogaster, Dokl. Akad. Nauk SSSR, 1946, vol. 51, no. 7, pp. 534–546.

    Google Scholar 

  11. Mazing, R.A., Variation and heredity of photoreactions in flies Drosophila melanogaster, Zh. Obshch. Biol., 1943, vol. 4, no. 4, pp. 209–231.

    Google Scholar 

  12. Benzer, S., From the gene to behavior, JAMA, 1971, vol. 218, no. 7, pp. 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  13. Pavlov, I.P., Twenty Years Experience in Objective Study of Higher Nervous Activity (Behavior) of Animals, in Polnoe sobranie sochinenii AN SSSR 1951–1954 (Complete Set of Works of Academy of Sciences of the Soviet Union 1951–1954), Moscow: Nauka, vol. 3, book 2, 2nd ed., 1973.

    Google Scholar 

  14. Dubnau, J., Chiang, A.S., and Tully, T., Neural substrates of memory: from synapse to system, J. Neurobiol., 2003, vol. 54, no. 1, pp. 238–253.

    Article  CAS  PubMed  Google Scholar 

  15. Baranov, M.S., Genome paths: a way to personalized and predictive medicine, Acta Nat., 2009, vol. 1, no. 3, pp. 70–80.

    CAS  Google Scholar 

  16. Pavlov, I., Conditioned Reflexes, New York: Oxford Univ. Press, 1927.

    Google Scholar 

  17. Benzer, S., The fine structure of the gene, Sci. Am., 1962, vol. 206, pp. 70–84.

    CAS  PubMed  Google Scholar 

  18. Hotta, Y. and Benzer, S., Mapping of behaviour in Drosophila mosaics, Nature, 1972, vol. 240, no. 5383, pp. 527–535.

    Article  CAS  PubMed  Google Scholar 

  19. Benzer, S., Genetic dissection of behavior, Sci. Am., 1973, vol. 229, no. 6, pp. 24–37.

    Article  CAS  PubMed  Google Scholar 

  20. Benzer, S., From gene to behavior, Aktual’nye problemy genetiki povedeniya (Current Issues in Behavior Genetics), Fedorov, V.K. and Ponomarenko, V.V., Eds., Leningrad: Nauka, 1975.

    Google Scholar 

  21. Dudai, Y., Jan, Y.N., Byers, D., et al., dunce, a mutant of Drosophila deficient in learning, Proc. Natl. Acad. Sci. U.S.A., 1976, vol. 73, no. 5, pp. 1684–1688.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Davis, R.L. and Davidson, N., Isolation of the Drosophila melanogaster dunce chromosomal region and recombinational mapping of dunce sequences with restriction site polymorphisms as genetic markers, Mol. Cell Biol., 1984, vol. 4, no. 2, pp. 358–367.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Margulies, C., Tully, T., and Dubnau, J., Deconstructing memory in Drosophila, Curr. Biol., 2005, vol. 15, no. 17, pp. 700–713.

    Article  Google Scholar 

  24. Chen, C.C., Wu, J.K., Lin, H.W., et al., Visualizing long-term memory formation in two neurons of the Drosophila brain, Science, 2012, vol. 335, no. 6069, pp. 678–685.

    Article  CAS  PubMed  Google Scholar 

  25. Zhuravlev, A.V., Nikitina, E.A., and Savvateeva-Popova, E.V., Learning and memory in Drosophila: physiological and genetic basis, Usp. Fiziol. Nauk, 2015, vol. 46, no. 1, pp. 75–90.

    Google Scholar 

  26. Janus, C. and Dubnau, J., Modeling behavior: the quest to link mechanisms to function, Genes. Brain Behav., 2003, vol. 2, no. 1, pp. 56–61.

    Article  CAS  PubMed  Google Scholar 

  27. Dubnau, J., Neurogenetic dissection of conditioned behavior: evolution by analogy or homology?, J. Neurogenet., 2003, vol. 17, no. 4, pp. 295–326.

    Article  PubMed  Google Scholar 

  28. Lobashev, M.E., On parallel analogous and homologous series of development of basic properties of higher nervous activity in animal phylogeny, in Materialy 2-go nauchogo soveshchaniya po evolyutsionnoi fiziologii, posvyashchennogo pamyati akademika L.A. Orbeli (Proceedings of the 2nd Scientific Conference on Evolutionary Physiology, dedicated to the memory of Academician L.A. Orbely), Moscow, 1960, pp. 16–23.

    Google Scholar 

  29. Lobashev, M.E., Signaling heredity, in Issledovaniya po genetike (Research in Genetics), Leningrad: Leningrad Gos. Univ., 1961, no. 1, pp. 3–11.

    Google Scholar 

  30. Germana, J., A transactional analysis of biobehavioral systems, Integr. Physiol. Behav. Sci., 1996, vol. 31, no. 3, pp. 210–218.

    Article  CAS  PubMed  Google Scholar 

  31. Karmiloff-Smith, A., Williams syndrome, Curr. Biol., 2007, vol. 17, no. 24, pp. 1035–1036.

    Article  Google Scholar 

  32. Poulsen, P., Esteller, M., Vaag, A., and Fraga, M.F., The epigenetic basis of twin discordance in age-related diseases, Pediatr. Res., 2007, vol. 61, pp. 38–42.

    Article  Google Scholar 

  33. Jirtle, R.L., Environmental epigenomics and disease susceptibility, Nat. Rev. Genet., 2007, vol. 8, pp. 253–262.

    Article  CAS  PubMed  Google Scholar 

  34. Skinner, M.K., Anway, M.D., Savenkova, M.I., et al., Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior, PLoS One, 2008, vol. 3, no. 11. e3745

    Article  PubMed Central  PubMed  Google Scholar 

  35. Crews, D., Gillette, R., Scarpino, S.V., et al., Epigenetic transgenerational inheritance of altered stress responses, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 23, pp. 9143–9148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Dias, B.G. and Ressler, K.J., Parental olfactory experience influences behavior and neural structure in subsequent generations, Nat. Neurosci., 2014, vol. 17, no. 1, pp. 89–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Fang, L., Wuptra, K., Chen, D., et al., Environmentalstress-induced chromatin regulation and its heritability, J. Carcinog. Mutagen., 2014, vol. 5, no. 1, p. 22058.

    PubMed Central  PubMed  Google Scholar 

  38. Heisnberg, M., Pavlov’s dog and Benzer’s fly: the genetics of higher nervous activity, Neurosci. Behav. Physiol., 1997, vol. 27, no. 5, pp. 632–634.

    Article  Google Scholar 

  39. Tully, T., Pavlov’s dogs, Curr. Biol., 2003, vol. 13, no. 4, pp. 117–119.

    Article  Google Scholar 

  40. Barditch, J., Gossweiler, S., McNeil, J., et al., The staufen/pumilio pathway is involved in Drosophila long-term memory, Curr. Biol., 2003, vol. 13, no. 4, pp. 286–296.

    Article  PubMed  Google Scholar 

  41. Bolduc, F.V. and Tully, T., Fruit flies and intellectual disability, Fly (Austin), 2009, vol. 3, no. 1, pp. 91–104.

    Article  CAS  Google Scholar 

  42. Landry, C.D., Kandel, E.R., and Rajasethupathy, P., New mechanisms in memory storage: piRNAs and epigenetics, Trends Neurosci., 2013, vol. 36, no. 9, pp. 535–542.

    Article  CAS  PubMed  Google Scholar 

  43. Vogel-Ciernia, A. and Wood, M.A., Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders, Neuropharmacology, 2014, vol. 80, pp. 18–27.

    Article  CAS  PubMed  Google Scholar 

  44. Jarome, T.J. and Lubin, F.D., Epigenetic mechanisms of memory formation and reconsolidation, Neurobiol. Learn. Mem., 2014. pii: S1074-7427(14)00141-5

    Google Scholar 

  45. Contestabile, A., Sintoni, S., and Monti, B., Histone deacetylase (HDAC) inhibitors as potential drugs to target memory and adult hippocampal neurogenesis, Curr. Psychopharmacol., 2012, vol. 1. pp. 14–28. doi 10.2174/2211556011201010014.

    CAS  Google Scholar 

  46. Savvateeva-Popova, E.V., Popov, A.V., Nikitina, E.A., et al., Pathogenic chaperone-like RNA induces congophilic aggregates and facilitates neurodegeneration in Drosophila, Cell Stress Chaperones, 2007, vol. 12, no. 1, pp. 9–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Savvateeva-Popova, E., Popov, A., Grossman, A., et al., Non-coding RNA as a trigger of neuropathologic disorder phenotypes in transgenic Drosophila, J. Neuronal. Transm., 2008, vol. 115, no. 12, pp. 1629–1642.

    Article  CAS  Google Scholar 

  48. Savvateeva-Popova, E.V., Medvedeva, Popov, A.V., et al., Role of non-coding RNAs in neurodegeneration and stress response in Drosophila, J. Biotechnol., 2008, vol. 3, no. 8, pp. 1010–1021.

    Article  CAS  Google Scholar 

  49. Medvedeva, A.V., Zhuravlev, A.V., and Savvateeva-Popova, E.V., LIMK1, the key enzyme of actin remodeling bridges spatial organization of nucleus and neural transmission: from heterochromatin via non-coding RNAs to complex behavior, in Horizons in Neuroscience Research, New York, 2010, vol. 1, ch. 4, pp. 161–193.

    Google Scholar 

  50. Rumyantsev, A.M., Zakharov, G.A., Zhuravlev, A.V., et al., Expression of the Drosophila melanogaster Limk1 gene 3′-UTRs mRNA in yeast Saccharomyces cerevisiae, Russ. J. Genet., 2014, vol. 50, no. 6, pp. 569–578.

    Article  CAS  Google Scholar 

  51. Lushnikov, S.G., Dmitriev, A.V., Fedoseev, A.I., et al., Low-frequency dynamics of DNA in Brillouin light scattering spectra, JETP Lett., 2013, vol. 98, no. 11, pp. 830–836.

    Google Scholar 

  52. Brázda, V., Laister, R.C., Jagelskrá, E.B., and Arrowsmith, C., Cruciform structures are a common DNA feature important for regulating biological processes, BMC Mol. Biol., 2011, vol. 12, p. 33.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Brázda, V., Háronríková, L., Liao, J.C., and Fojta, M., DNA and RNA quadruplex-binding proteins, Int. J. Mol. Sci., 2014, vol. 15, no. 10, pp. 17493–17517.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Hirsch, E.C., How to judge animal models of Parkinson’s disease in terms of neuroprotection, J. Neural. Transm., 2006, suppl., vol. 70, pp. 255–260.

    CAS  Google Scholar 

  55. Broadstock, M., Ballard, C., and Corbett, A., Latest treatment options for Alzheimer’s disease, Parkinson’s disease dementia and dementia with Lewy bodies, Expert Opin. Pharmacother., 2014, vol. 15, no. 13, pp. 1797–1810. doi 10.1517/14656566.2014.936848. Epub 2014 Jul 3.

    Article  CAS  PubMed  Google Scholar 

  56. Nikitina, E.A., Medvedeva, A.V., Zakharov, G.A., and Savvateeva-Popova, E.V., Williams syndrome as a model for elucidation of the pathway genes—the brain—cognitive functions: genetics and epigenetics, Acta Nat., 2014, vol. 6,no. 1, pp. 9–22.

    CAS  Google Scholar 

  57. Zucchi, F.C., Yao, Y., and Metz, G.A., The secret language of destiny: stress imprinting and transgerational origins of disease, Front. Genet., 2012. doi 10.3389/fgene.2012.00096.eCollection 2012

    Google Scholar 

  58. Bernstein, B.W. and Bamburg, J.R., ADF/cofilin: a functional node in cell biology, Trends Cell Biol., 2010, vol. 20, no. 4, pp. 187–195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Walsh, K.P., Minamide, L.S., Kane, S.J., et al., Amyloid- and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons, PLoS One, 2014, vol. 9, no. 4. e95995

    Google Scholar 

  60. Hughes, V., Sperm RNA carries marks of trauma, Nature, 2014, vol. 508, no. 7496, pp. 296–297.

    Article  CAS  PubMed  Google Scholar 

  61. Hughes, V., Epigenetics: the sins of the father, Nature, 2014, vol. 507, no. 7490, pp. 22–24.

    Article  CAS  PubMed  Google Scholar 

  62. Kuzin, B.A., Nikitina, E.A., Cherezov, R.O., et al., Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification, PLoS One, 2014, vol. 9, no. 4. e94975

    Article  PubMed Central  PubMed  Google Scholar 

  63. Zheleznyakova, G.Y., Voisin, S., Kiselev, A.V., et al., Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity, Eur. J. Hum. Genet., 2013, vol. 21, no. 9, pp. 988–993.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Johnson, R., Noble, W., Tartaglia, G.G., and Buckley, N.J., Neurodegeneration as an RNA disorder, Prog. Neurobiol., 2012, vol. 99, pp. 293–315.

    Article  CAS  PubMed  Google Scholar 

  65. Maciotta, S., Meregalli, M., and Torrente, Y., The involvement of microRNAs in neurodegenerative diseases, Front Cell Neurosci., 2013, vol. 7, p. 265.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Gehrke, S., Imai, Y., Sokol, N., and Lu, B., Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression, Nature, 2010, vol. 466, pp. 637–641.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Venderova, K., Kabbach, G., Abdel-Messih, E., et al., Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease, Hum. Mol. Genet., 2009, vol. 18, no. 22, pp. 4390–4404.

    Article  CAS  PubMed  Google Scholar 

  68. Rogacheva, O.N., Shchegolev, B.F., Stefanov, V.E., et al., Initiation of the 3′: 5′-AMP induced protein kinase A Ia regulatory subunit conformational transition: 1. A202 and A326 are critical residues, Biochemistry (Moscow), 2012, vol. 77, no. 5, pp. 456–464.

    Article  CAS  Google Scholar 

  69. Wu, Y., Chen, C., Mercer, A., and Sokol, N., Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo, Dev. Cell, 2012, vol. 23, no. 1, pp. 202–209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Kucherenko, M.M., Barth, J., Fiala, A., and Shcherbata, H.R., Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain, EMBO J., 2012, vol. 31, no. 24, pp. 4511–4523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Redt-Clouet, C., Trannoy, S., Boulanger, A., et al., Mushroom body neuronal remodelling is necessary for short-term but not for long-term courtship memory in Drosophila, Eur. J. Neurosci., 2012, vol. 35, no. 11, pp. 1684–1691.

    Article  PubMed  Google Scholar 

  72. Sokol, N.S., Xu, P., Jan, Y.N., and Ambros, V., Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis, Genes Dev., 2008, vol. 22, no. 12, pp. 1591–1596.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Chawla, G. and Sokol, N.S., Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function, Development, 2012, vol. 139, no. 10, pp. 1788–1797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Zovoilis, A., Agbemenyah, H.Y., Agis-Balboa, R.C., et al., microRNA-34c is a novel target to treat dementias, EMBO J., 2011, vol. 30, pp. 4299–4308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Bader, A.G., miR-34a microRNA replacement therapy is headed to the clinic, Front. Genet., 2012, vol. 3, p. 120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Liu, N., Landreh, M., Cao, K., et al., The microRNA miR-34 modulates aging and neurodegeneration in Drosophila, Nature, 2012, vol. 482, pp. 519–523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Soni, K., Choudhary, A., Patowary, A., et al., miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio, Nucleic Acids Res., 2013, vol. 41, no. 8, pp. 4470–4480.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Feng, Y., Huang, W., Meng, W., et al., Heat shock improves sca-1 stem cells survival and directs ischemic cardiomyocytes towards a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway, Stem Cells, 2014, vol. 32, pp. 462–472.

    Article  CAS  PubMed  Google Scholar 

  79. Nikitina, E.A., Medvedeva, A.V., Dolgaya, Yu.F., et al., Involvement of GDNF and LIMK1 and heat shock proteins in Drosophila learning and memory formation, J. Evol. Biochem. Physiol., 2012, vol. 48, nos. 5–6, pp. 529–539.

    Article  CAS  Google Scholar 

  80. Sempere, L.F., Sokol, N.S., Dubrovsky, E.B., et al., Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-complex gene activity, Dev. Biol., 2003, vol. 259, no. 1, pp. 9–18.

    Article  CAS  PubMed  Google Scholar 

  81. Kucherenko, M.M. and Shcherbata, H.R., Steroids as external temporal codes act via microRNAs and cooperate with cytokines in differential neurogenesis, Fly (Austin), 2013, vol. 7, no. 3, pp. 173–183.

    Article  CAS  Google Scholar 

  82. Chen, G.C., Gajowniczek, P., and Settleman, J., Rho-LIM kinase signaling regulates ecdysone-induced gene expression and morphogenesis during Drosophila metamorphosis, Curr. Biol., 2004, vol. 14, no. 4, pp. 309–313.

    Article  CAS  PubMed  Google Scholar 

  83. Haramati, S., Chapnik, E., Sztainberg, Y., et al., miRNA malfunction causes spinal motor neuron disease, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 13111–13116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Yatsenko, A.S. and Shcherbata, H.R., Drosophila miR-9a targets the ECM receptor dystroglycan to canalize myotendinous junction formation, Dev. Cell, 2014, vol. 28, no. 3, pp. 335–348.

    Article  CAS  PubMed  Google Scholar 

  85. Juliano, R., Alam, M.R., Dixit, V., and Kang, H., Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides, Nucleic Acids Res., 2008, vol. 36, pp. 4158–4171.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Savvateeva-Popova.

Additional information

Original Russian Text © E.V. Savvateeva-Popova, E.A. Nikitina, A.V. Medvedeva, 2015, published in Genetika, 2015, Vol. 51, No. 5, pp. 613–624.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savvateeva-Popova, E.V., Nikitina, E.A. & Medvedeva, A.V. Neurogenetics and neuroepigenetics. Russ J Genet 51, 518–528 (2015). https://doi.org/10.1134/S1022795415050075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415050075

Keywords

Navigation