Skip to main content

Advertisement

Log in

Non-coding RNA as a trigger of neuropathologic disorder phenotypes in transgenic Drosophila

  • Basic Neurosciences, Genetics and Immunology - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

At most, many protein-misfolding diseases develop as environmentally induced sporadic disorders. Recent studies indicate that the dynamic interplay between a wide repertoire of noncoding RNAs and the environment play an important role in brain development and pathogenesis of brain disorders. To elucidate this new issue, novel animal models which reproduce the most prominent disease manifestations are required. For this, transgenic Drosophila strains were constructed to express small highly structured, non-coding RNA under control of a heat shock promoter. Expression of the RNA induced formation of intracellular aggregates revealed by Thioflafin T in embryonic cell culture and Congo Red in the brain of transgenic flies. Also, this strongly perturbed the brain control of locomotion monitored by the parameters of sound production and memory retention of young 5-day-old males. This novel model demonstrates that expression of non-coding RNA alone is sufficient to trigger neuropathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler V, Zeiler B, Kryukov V, Kascsak R, Rubinstein R, Grossman A (2003) Small, highly structured RNAs participate in the conversion of human recombinant PrPSen to PrPRes in vitro. J Mol Biol 332:47–57

    Article  PubMed  CAS  Google Scholar 

  • Bennet-Clark HC (1984) A particle velocity microphone for the song of small insects and other acoustic measurements. J Exp Biol 108:459–463

    Google Scholar 

  • Bonini NM, Fortini ME (2003) Human neurodegenerative disease modeling using Drosophila. Ann Rev Neurosci 26:627–656

    Article  PubMed  CAS  Google Scholar 

  • Burmistrova OA, Goltsov AY, Abramova LI, Kaleda VG, Orlova VA, Rogaev EI (2007) MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry 72:578–582

    PubMed  CAS  Google Scholar 

  • Choczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Echalier G (1999) Drosophila cells in culture. Academic Press, New York

    Google Scholar 

  • Elghetany MT, Saleem A (1988) Methods for staining amyloid in tissues: a review. Stain Technol 63:201–212

    PubMed  CAS  Google Scholar 

  • Fanti L, Berloco M, Piacentini L, Pimpinelli S (2003) Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 117:135–147

    Article  PubMed  CAS  Google Scholar 

  • Gispert-Sanchez S, Auburger G (2006) The role of protein aggregates in neuronal pathology: guilty, innocent, or just trying to help? J Neural Transm Suppl 70:111–117

    Article  PubMed  CAS  Google Scholar 

  • Greenspan RF, Ferveur J-F (2000) Courtship in Drosophila. Annu Rev Genet 34:205–232

    Article  PubMed  CAS  Google Scholar 

  • Grünblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MB (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiqutin–proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 111:543–1573

    Google Scholar 

  • Heaphy S, Finch JT, Gait MJ, Karn J, Singh M (1991) Human immunodeficiency virus type 1 regulator of virion expression, rev, forms nucleoprotein filaments after binding to a purine-rich “bubble” located within the rev-responsive region of viral mRNAs. Proc Natl Acad Sci USA 88:7366–7370

    Article  PubMed  CAS  Google Scholar 

  • Hébert SS, De Strooper B (2007) Molecular biology. miRNAs in neurodegeneration. Science 317:1179–1180

    Article  PubMed  Google Scholar 

  • Heimbeck G, BugnonV Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 98:15336–16341

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M (1994) Central brain function in insects: genetic studies on the mushroom bodies and central complex in Drosophila. Fortschr Zool 39:61–79

    Google Scholar 

  • Hiesenberg M, Böhl K (1979) Isolation of anatomical brain mutants of Drosophila by histological means. Z Naturf 34:134–147

    Google Scholar 

  • Hirsch EC (2006) How to judge animal models of Parkinson’s disease in terms of neuroprotection. J Neural Transm Suppl 70:255–260

    Article  PubMed  CAS  Google Scholar 

  • Iwazaki T, Li X, Harada K (2005) Evolvability of the mode of peptide binding by an RNA. RNA 11:1364–1373

    Article  PubMed  CAS  Google Scholar 

  • Ivey-Hoyle M, Rosenberg M (1990) Rev-dependent expression of human immunodeficiency virus type 1 gp160 in Drosophila melanogaster cells. Mol Cell Biol 10:6152–6159

    PubMed  CAS  Google Scholar 

  • Jin Y, Cowan JA (2007) Cellular activity of Rev response element RNA targeting metallopeptides. J Biol Chem 12:637–644

    CAS  Google Scholar 

  • Jones S, Daley DT, Luscombe NM, Berman HM, Thornton JM (2001) Protein–RNA interactions: a structural analysis. Nucleic Acids Res 29:943–954

    Article  PubMed  CAS  Google Scholar 

  • Kamyshev NG, Iliadi KG, Bragina JV (1999) Drosophila conditioned courtship: two ways of testing memory. Learn Mem 6:1–20

    PubMed  CAS  Google Scholar 

  • Kashiwagi N, Furuta H, Ikawa Y (2007) Design and analysis of a structural RNA that acts as a template for peptide ligation. Nucleic Acids Symp Ser 51:387–388

    Article  CAS  Google Scholar 

  • Korneev S, O’Shea M (2005) Natural antisense RNAs in the nervous system. Rev Neurosci 16:213–222

    PubMed  CAS  Google Scholar 

  • Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076

    PubMed  CAS  Google Scholar 

  • Lee W-CM, Yoshihara M, Littleton JT (2004) Cytoplasmic aggregates trap polyglutamine-containing proteins and block axonal transport in a Drosophila model of Huntington’s disease. Proc Nat Acad Sci USA 101:3224–3229

    Article  PubMed  CAS  Google Scholar 

  • Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512

    Article  PubMed  CAS  Google Scholar 

  • LeVine H 3rd (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  PubMed  CAS  Google Scholar 

  • LeVine H 3rd (2005) Multiple ligand binding sites on A beta(1–40) fibrils. Amyloid 12:5–14

    Article  PubMed  CAS  Google Scholar 

  • Lim JK (1993) In situ hybridization with biotinylated DNA. Drosoph Inf Serv 72:73–77

    Google Scholar 

  • Lockhart A, Ye L, Judd DB, Merritt AT, Lowe PN, Morgenstern JL, Hong G, Gee AD, Brown J (2005) Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer’s disease PET imaging agents on beta-amyloid peptide fibrils. J Biol Chem 280:7677–7684

    Article  PubMed  CAS  Google Scholar 

  • Lovestone S, McLoughlin DM (2002) Protein aggregates and dementia: is there a common toxicity? J Neurol Neurosurg Psychiatry 72:52–161

    Google Scholar 

  • Maniatis T, Fritsch EE, Sambrook J (1982) Molecular cloning. CSHL Press, Cold Spring Harbor, New York

    Google Scholar 

  • Martin J-R, Raabe T, Heisenberg M (1999) Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol Ser A 185:277–288

    Article  CAS  Google Scholar 

  • Masliah E, Terry RD, DeTeresa RM, Hansen LA (1989) Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer disease. Neurosci Lett 103:234–239

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2007) A new paradigm for developmental biology. J Exp Biol 210:1526–1547

    Article  PubMed  Google Scholar 

  • Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14:R121–R132

    Article  PubMed  CAS  Google Scholar 

  • Matzura O, Wennborg A (1996) RNA draw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci 12:247–249

    PubMed  CAS  Google Scholar 

  • Mehler MF, Mattick JS (2006) Non-coding RNAs in the nervous system. J Physiol 575:333–341

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Mattick JS (2007) Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87:799–823

    Article  PubMed  CAS  Google Scholar 

  • Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci USA 105:716–721

    Article  PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Neurosci 6:11–22

    Article  CAS  Google Scholar 

  • Nikitina EA, Tokmatcheva EV, Savvateeva-Popova EV (2003) Heat shock during the development of central structures of the Drosophila brain: memory formation in the l(1)ts403 mutant of Drosophila melanogaster. Russian J Genetics 39:25–31

    Article  CAS  Google Scholar 

  • Osborne RJ, Thornton CA (2006) RNA-dominant diseases. Hum Mol Genet 15:R162–R169

    Article  PubMed  CAS  Google Scholar 

  • Perneger TV (1998) What’s wrong with Bonferroni adjustments. Br Med J 316:1236–1238

    CAS  Google Scholar 

  • Pirrotta V (1988) Vectors for P-mediated transformation in Drosophila. Biotechnology 10:437–456

    PubMed  CAS  Google Scholar 

  • Popov A, Savvateeva-Popova EV, Kamyshev NG (2000) Peculiarities of acoustic communication in fruit flies Drosophila melanogaster. Sens Syst 14:60–74

    Google Scholar 

  • Popov AV, Peresleni A, Savvateeva-Popova E, Wolf R, Heisenberg M (2004) The role of the mushroom bodies and of the central complex of Drosophila melanogaster brain in the organization of courtship behavior and communicative sound production. J Evol Biochem Physiol 40:641–652

    Google Scholar 

  • Rogaev EI (2005) Small RNAs in human brain development and disorders. Biochemistry 70:1404–1407

    PubMed  CAS  Google Scholar 

  • Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118:461–470

    PubMed  CAS  Google Scholar 

  • Roterman I, Krόl M, Nowak M, Konieczny L, Rybarska J, Stopa B, Piekarska B, Zemanek G (2001) Why Congo red binding is specific for amyloid proteins - model studies and a computer analysis approach. Med Sci Monit 7:771–784

    PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353

    Article  PubMed  CAS  Google Scholar 

  • Savvateeva-Popova EV, Popov AV, Nikitina EA, Medvedeva AV, Peresleni AI, Korochkin L, Grossman AI, Pyatkov KI, Zatsepina OG, Zelentsova ES, Evgen`ev MB (2007) Pathogenic chaperone-Like RNA induces congophilic aggregates and facilitates neurodegneration in Drosophila. Cell Stress Chaperones 12:9–19

    Article  PubMed  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32

    Article  PubMed  CAS  Google Scholar 

  • Siegel RW, Hall JC (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc Natl Acad Sci USA 76:3430–3434

    Article  PubMed  CAS  Google Scholar 

  • Siwicki KK, Ladewski L (2003) Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav Processes 64:225–238

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman WH & Co, New York, pp 803–820

    Google Scholar 

  • Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13:1852–1861

    PubMed  CAS  Google Scholar 

  • Tribl F, Marcus K, Bringmann G, Meyer HE, Gerlach M, Riederer P (2006) Proteomics of the human brain: sub-proteomes might hold the key to handle brain complexity. J Neural Transm 113:1041–1054

    Article  PubMed  CAS  Google Scholar 

  • Vasan S, Mong PY, Grossman A (2006) Interaction of prion protein with small highly structured RNAs: detection and characterization of PrP-oligomers. Neurochem Res 31:629–37

    Article  PubMed  CAS  Google Scholar 

  • Wolf R, Wittig T, Liu L, Wustmann G, Eyding D, Heisenberg M (1998) Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn Mem 5:66–178

    Google Scholar 

  • Zawistowski S (1988) A replication demonstrating reduced courtship of Drosophila melanogaster by associative learning. J Comp Psychol 102:174–176

    Article  Google Scholar 

  • Zeiler B, Adler V, Kryukov V, Grossman A (2003) Concentration and removal of prion proteins from biological solutions. Biotechnol Appl Biochem 37:173–182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by Q-RNA Firm 799 (USA) and Grants of Russian Foundation for Fundamental Research 800 (E. S–P, A. P, M.E, O.Z) and Grant Molecular and Cellular Biology to M.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Savvateeva-Popova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savvateeva-Popova, E., Popov, A., Grossman, A. et al. Non-coding RNA as a trigger of neuropathologic disorder phenotypes in transgenic Drosophila . J Neural Transm 115, 1629–1642 (2008). https://doi.org/10.1007/s00702-008-0078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-008-0078-8

Keywords

Navigation