Skip to main content
Log in

Influence of Presowing Treatment of Seeds with Salicylic Acid on Growth and Photosynthetic Apparatus of Barley with Different Zinc Contents in Substrate

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Under the conditions of a growing experiment, the authors studied the effect of presowing treatment of seeds with salicylic acid (SA) on the growth parameters and photosynthetic apparatus (PSA) of barley plants (Hordeum vulgare L.), which are in optimal conditions of mineral nutrition or with a lack of zinc in the root environment. It has been shown that zinc deficiency does not adversely affect PSA but causes inhibition of plant growth. Presowing treatment of seeds with SA (10 μM) had a stimulating effect on the intensity of photosynthesis and stomatal conductance, which ensured successful plant growth under conditions of zinc deficiency. At the same time, in plants grown from seeds treated with SA, the content of zinc in the roots and shoots was higher than in plants whose seeds were not treated. Based on the obtained results, a conclusion was made on the possibility and prospects of using presowing seed treatment with SA for growing barley plants under conditions of zinc deficiency in the root environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Cakmak, I., Torun, B., Erenoğlu, B., Öztürk, L.,Marschner, H., Kalayci, M., Ekiz, H., and Yilmaz, A., Morphological and physiological differences in the response of cereals to zinc deficiency, Euphytica, 1998, vol. 100, p. 349.

    Article  CAS  Google Scholar 

  2. Sychev, V.G., Aristarkhov, A.N., Kharitonova, A.F., Tolstousov, V.P., Efimova, N.K., and Bushuev, N.N., Intensifikatsiya produktsionnogo protsessa rasteniy mikroelementami. Priemy upravleniya (Intensification of the Production Process of Plants Trace Elements. Management Techniques), Moscow: Vseross. Nauchno-issled. Inst. Agrokhim. im. D.N. Pryanishnikova 2009.

  3. Alloway, B.J., Zinc in Soil and Crop Nutrition. Brussels: International Zinc Association, 2008, 2nd ed.

  4. Kaznina, N.M. and Titov, A.F., Effect of zinc deficiency on physiological processes and cereal productivity, Usp. Sovrem. Biol., 2019, vol. 139, p. 280. https://doi.org/10.1134/S0042132419030037

    Article  Google Scholar 

  5. Ali, A., Bhat, B.A., Rather, G.A., Malla, B.A., and Ganie, S., Proteomic studies of micronutrient deficiency and toxicity, in Plant Micronutrients. Deficiency and Toxicity Management, Aftab, T., and Hakeem, K.R., Eds., Springer, 2022, p. 257.

  6. Khan, S.T., Malik, A., Alwarthan, A., and Shaik, M.R., The enormity of the zinc deficiency problem and available solutions; an overview, Arabian J. Chem., 2022, vol. 15. https://doi.org/10.1016/j.arabjc.2021.103668

  7. Ryabchinskaya, T.A. and Zimina, T.V., Means regulating plant growth and development in agrotechnologies of modern plant growing, Agrokhimiya, 2017, vol. 12, p. 62.

    Google Scholar 

  8. Vlot, A.C., Dempsey, D.A., and Klessig, D.F., Salicylic acid, a multifaceted hormone to combat disease, Annu. Rev. Phytopathol., 2009, vol. 47, p. 177. https://doi.org/10.1146/annurev.phyto.050908.135202

    Article  CAS  PubMed  Google Scholar 

  9. Hayat, Q., Hayat, S., Irfan, M., and Ahmad, A., Effect of exogenous salicylic acid under changing environment: a review, Environ. Exp. Bot., 2010, vol. 68, p. 14. https://doi.org/10.1016/j.envexpbot.2009.08.005

    Article  CAS  Google Scholar 

  10. Janda, T., Gondor, O.K., Yordanova, R., Szalai, G., and Pal, M., Salicylic acid and photosynthesis: signalling and effects, Acta Physiol. Plant., 2014, vol. 36, p. 2537. https://doi.org/10.1007/s11738-014-1620-y

    Article  CAS  Google Scholar 

  11. Shakirova, F.M., Nespetsificheskaya ustoychivost’ rasteniy k stressovym faktoram i ee regulyatsiya (Nonspecific Resistance of Plants to Stress Factors and Its Regulation), Ufa: Gilem, 2001.

    Google Scholar 

  12. Horvath, E., Szalai, G., and Janda, T., Induction of abiotic stress tolerance by salicylic acid signaling, J. Plant Growth Regul., 2007, vol. 26, p. 290. https://doi.org/10.1007/s00344-007-9017-4

    Article  CAS  Google Scholar 

  13. Khan, M.I.R., Fatma, M., Per, T.S., Anjum, N.A., and Khan, N.A., Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants, Front. Plant Sci., 2015, vol. 6. https://doi.org/10.3389/fpls.2015.00462

  14. Kolupaev, Yu.E., Yastreb, T.O., Polyakov, A.K., and Dmitriev, A.P., Salicylic acid and the formation of adaptive plant responses to abiotic stressors: the role of signaling network components. Vestn. Tomsk. Gos. Univ. Biol., 2021, vol. 55, p. 135. https://doi.org/10.17223/19988591/55/8

    Article  Google Scholar 

  15. Wu, Q., Jing, H.‑K., Feng, Z.‑H., Huang, J., Shen, R.‑F., and Zhu, X.‑F., Salicylic acid acts upstream of auxin and nitric oxide (NO) in cell wall phosphorus remobilization in phosphorus deficient rice, Rice, 2022, vol. 15. https://doi.org/10.1186/s12284-022-00588-y

  16. Su, T., Yu, S., Yu, R., Zhang, F., Yu, Y., Zhang, D., Zhao, X., and Wang, W., Effects of endogenous salicylic acid during calcium deficiency-induced tipburn in chinese cabbage (Brassica rapa L. ssp. pekinensis), Plant Mol. Biol. Rep., 2016, vol. 34, p. 607. https://doi.org/10.1007/s11105-015-0949-8

    Article  CAS  Google Scholar 

  17. Kong, J., Dong, Y., Xu, L., Liu, S., and Bai, X., Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L., Bot. Stud., 2014, vol. 55. https://doi.org/10.1186/1999-3110-55-9

  18. Shen, C., Yang, Y., Liu, K., Zhang, L., Guo, H., Sun, T., and Wang, H., Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis, J. Exp. Bot., 2016, vol. 67, p. 4179. https://doi.org/10.1093/jxb/erw196

    Article  CAS  PubMed  Google Scholar 

  19. Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F., and Guzelordu, T., Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.), Arch. Agron. Soil Sci., 2005, vol. 51, p. 687. https://doi.org/10.1080/03650340500336075

    Article  CAS  Google Scholar 

  20. Khan, N.A., Syeed, S., Masood, A., Nazar, R., and Iqbal, N., Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress, Inter. J. Plant Biol., 2010, vol. 1. https://doi.org/10.4081/pb.2010.e1

  21. Wang, C., Zhang, S., Wang, P., Hou, J., Qian, J., Ao, Y., Lu, J., and Li, L., Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress, Chemosphere, 2011, vol. 84, p. 136. https://doi.org/10.1016/j.chemosphere.2011.02.026

    Article  CAS  PubMed  Google Scholar 

  22. GOST (State Standard) 12038-84: Interstate Standard. Seeds of Agricultural Crops. Germination Methods, 1986.

  23. Anikiev, V.V. and Kutuzov, F.F., A new method for determining the leaf area of cereals, Russ. J. Plant Phys., 1961, vol. 8, p. 375.

    Google Scholar 

  24. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., Svetova, E.N., Rybnikova, Z.P., Mikhaylova, A.I., Paramonov, A.S., Utitsyna, V.L., Ekhova, M.V., and Kolodey, V.S., Precision (ICP-MS, LA-ICP-MS) analysis of the composition of rocks and minerals: Methodology and assessment of the accuracy of results on the example of Early Precambrian mafic complexes, Trudy KarNTs RAN. Ser. Geol. Dokemb., 2015, vol. 7, p. 54.

    Google Scholar 

  25. Titov, A.F. and Talanova, V.V., Ustoychivost’ rasteniy i fitogormony (Plant Resistance and Phytohormones), Petrozavodsk: Karel’skiy nauchnyy tsentr RAN, 2009.

  26. Rhaman, M.S., Imran, S., Rauf, F., Khatun, M., Baskin, C.C., Murata, Y., and Hasanuzzaman, M., Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress, Plants, 2021, vol. 10. https://doi.org/10.3390/plants10010037

  27. Per, T.S., Fatma, M., Asgher, M., Javied, S., and Khan, N.A., Salicylic acid and nutrients interplay in abiotic stress tolerance, Salicylic Acid: A Multifaceted Hormone, Nazar, R., Iqbal, N., and Khan, N.A., Eds., Springer, 2017, p. 221.

    Google Scholar 

  28. Krantev, A., Yordanova, R., Janda, T., Szalai, G., and Popova, L., Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants, J. Plant Physiol., 2008, vol. 165, p. 920. https://doi.org/10.1016/j.jplph.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  29. Hossian, B., Hirata, N., Nagatomo, Y., Akashi, R., and Takaki, H., Internal zinc accumulation is correlated with increased growth in rice suspension culture, J. Plant Growth Reg., 1997, vol. 16, p. 239.

    Article  Google Scholar 

  30. Chen, W., Yang, X., He, Z. Feng, Y., and Hu, F., Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress, Physiol. Plantarum., 2008, vol. 132, p. 89. https://doi.org/10.1111/j.1399-3054.2007.00992.x

    Article  CAS  Google Scholar 

  31. Yavas, I. and Unay, A., Effects of zinc and salicylic acid on wheat under drought stress, JAPS, 2016, vol. 26, p. 1012.

    CAS  Google Scholar 

  32. Pirasteh‑Anosheh, H., Ranjbar, G., Hasanuzzaman, M., Khanna, K., Bhardwa, R., and Ahmad, P., Salicylic acid‑mediated regulation of morpho‑physiological and yield attributes of wheat and barley plants in deferring salinity stress, J. Plant Growth Regul., 2022, vol. 41, p.1291. https://doi.org/10.1007/s00344-021-10358-7

    Article  CAS  Google Scholar 

  33. Yotsova, E.K., Dobrikova, A.G., Stefanov, M.A., Kouzmanova, M., and Apostolova, E.L., Improvement of the rice photosynthetic apparatus defence under cadmium stress modulated by salicylic acid supply to roots, Theor. Exp. Plant Physiol., 2018, vol. 30, p. 57. https://doi.org/10.1007/s40626-018-0102-9

    Article  CAS  Google Scholar 

  34. Xu, L., Zhao, H., Ruan, W., Deng, M., Wang, F., Peng, J., Luo, J., Chen, Z., and Yib, K., ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice, The Plant Cell, 2017, vol. 29, p. 560. https://doi.org/10.1105/tpc.16.00665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, H., Liu, R.L., and Jin, J.Y., Effects of zinc and soil moisture on photosynthetic rate and chlorophyll fluorescence parameters of maize, Biol. Plantarum, 2009, vol. 53, p. 191. https://doi.org/10.1007/s10535-009-0033-z

    Article  CAS  Google Scholar 

  36. Khan, W., Prithiviraj, B., and Smith, D.L., Photosynthetic responses of corn and soybean to foliar application of salicylates, J. Plant Physiol., 2003, vol. 160, p. 485. https://doi.org/10.1078/0176-1617-00865

    Article  CAS  PubMed  Google Scholar 

  37. Liu, C., Guo, J., Cui, Y., Lü, T., Zhang, X., and Shi, G., Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings, Plant Soil, 2011, vol. 344, p. 131. https://doi.org/10.1007/s11104-011-0733-y

    Article  CAS  Google Scholar 

  38. Husen, A., Iqbal, M., Sohrab, S. S., and Ansari, M. K. A., Salicylic acid alleviates salinity caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata A. Br.), Agric. Food Secur., 2018, vol. 7, p. 44. https://doi.org/10.1186/s40066-018-0194-0

    Article  Google Scholar 

  39. Sedaghata, M., Tahmasebi-Sarvestania, Z., Emamb, Y., Mokhtassi-Bidgolia, A., and Sorooshzadeha, A., Foliar-applied GR24 and salicylic acid enhanced wheat drought tolerance, Russ. J. Plant Physiol., 2020, vol. 67, p. 733. https://doi.org/10.1134/S1021443720040159

    Article  Google Scholar 

  40. Yildirim, E., Turan, M., and Guvenc, I., Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress, J. Plant Nutr., 2008, vol. 31, p. 593. https://doi.org/10.1080/01904160801895118

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by a grant from the Russian Science Foundation (project no. 22-26-00168, https://rscf.ru/ projent/22-26-00168/). The equipment of the Center for Collective Use of the Federal Research Center Karelian Scientific Center, Russian Academy of Sciences, was used in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ignatenko.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as research subjects.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Abbreviations: SA, salicylic acid; PSA, photosynthetic apparatus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatenko, A.A., Batova, Y.V., Kholoptseva, E.S. et al. Influence of Presowing Treatment of Seeds with Salicylic Acid on Growth and Photosynthetic Apparatus of Barley with Different Zinc Contents in Substrate. Russ J Plant Physiol 70, 35 (2023). https://doi.org/10.1134/S1021443723700115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700115

Keywords:

Navigation