Skip to main content
Log in

Biodiversity of Photosynthetic Pigments, Macronutrients Uptake and Fruit Quality of Tomato Genotypes

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Screening genotypes considers an effective method to enhance genetic improvement before releasing plant breeding program efforts based on the observed variation. This study investigates the genotypic diversity of photosynthetic pigments, macronutrient uptake of tomato leaves and fruit quality. It also measures the correlation coefficient of fruit quality traits with their leaves' physical-chemical parameters of twelve tomato (Solanum lycopersicum L.) genotypes (‘6416 F1’, ‘218 F1’, ‘Bokary’, ‘Chizhik’, ‘Corrida’, ‘Delfo F1’, ‘Fokker F1’, ‘Goldstone’, ‘Malinovka’, ‘Petrovsky’, ‘Siberian’, and ‘Tyler F1’). Tomato genotypes varied concerning chlorophyll, carotene, macronutrient contents in their leaves and characteristics of fruit quality. The highest values for tomato fruit quality such as ASA, lycopene, TSS, maturity degree and taste index were obtained from ‘218 F1’, ‘Fokker F1’ and ‘Siberian’ genotypes. ASA, DM, TSS, and taste index of tomato fruits positively correlates with photosynthetic pigments, nitrogen and potassium contents of tomato leaves. There was a negative correlation of maturity degree with nitrogen and phosphorus contents. Inserting ‘218 F1’, ‘Fokker F1’ and ‘Siberian’ genotypes into tomato breeding programs for increased TSS, lycopene, taste index in tomato fruits is subject to these challenges because these traits had very high heritability ratios (95.6, 98.1 and 95.3%). Furthermore, ten primers showed a total of 45 amplified products to perform RAPD Analysis. Primers OPA-03, OPG-09, OPA-02, OPA-01 and OPA-14 viewed the highest values for polymorphism percentage P%, polymorphism information content (PIC), marker index (MI) and Resolving power (Rp), respectively. UPGMA cluster analysis divided genotypes into three groups. The first cluster was the largest and contains seven genotypes, while the third one was the smallest contains two genotypes. Single marker analysis indicated that the associated markers with studied biochemical traits were probably candidate markers linked to them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Périlleux, C., Lobet, G., and Tocquin, P., Inflorescence development in tomato: gene functions within a zigzag model, Front. Plant Sci., 2014, vol. 5, p. 121. https://doi.org/10.3389/fpls.2014.00121

    Article  PubMed  PubMed Central  Google Scholar 

  2. Niu, K., Guo, H., Kakizaki, M., Cui, Y., Ohmori-Matsuda, K., Guan, L., Hozawa, A., Kuriyama, S., Tsuboya, T., Ohrui, T., Furukawa, K., Arai, H., Tsuji, I., and Nagatomi, R., A tomato-rich diet is related to depressive symptoms among an elderly population aged 70 years and over: a population based, cross-sectional analysis, J. Affect. Disord., 2013, p. 144. https://doi.org/10.1016/j.jad.2012.04.040

  3. Croft, H. and Chen, J.M., Leaf pigment content, in Comprehensive Remote Sensing, Vol. 3: Terrestrial Ecosystems, Liang, S., Ed., Amsterdam: Elsevier, 2017, p. 117. https://doi.org/10.1016/B978-0-12-409548-9.10547-0

  4. Kiang, N.Y., Siefert, J., Govindjee, and Blankenship, R.E., Spectral signatures of photosynthesis. I. Review of Earth organisms, Astrobiology, 2007, vol. 7, p. 222. https://doi.org/10.1089/ast.2006.0105

    Article  CAS  PubMed  Google Scholar 

  5. Ritz, T., Damjanović, A., Schulten, K., Zhang, J., and Koyama, Y., Efficient light harvesting through carotenoids. Photosynth. Res., 2000, vol. 66, p. 125. https://doi.org/10.1023/a:1010750332320

    Article  CAS  PubMed  Google Scholar 

  6. Bloom, A.J., The increasing importance of distinguishing among plant nitrogen sources, Curr. Opin. Plant Biol., 2015, vol. 25, p.10. https://doi.org/10.1016/j.pbi.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  7. Yang, T., Zhang, S., Hu, Y., Wu, F., Hu, Q., Chen, G., and Xu, G., The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels, Plant Physiol., 2014, vol. 166, p. 945. https://doi.org/10.1104/pp.114.246520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Razaq, M., Zhang, P., Shen, H., and Salahuddin, A., Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono, PLoS One, 2017, vol. 12, p. e0171321. https://doi.org/10.1371/journal.pone.0171321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Causse, M., Chaïb, J., Lecomte, L., and Buret, M., Both additivity and epistasis control the genetic variation for fruit quality traits in tomato, Theor. Appl. Genet., 2007, vol. 115, p. 429. https://doi.org/10.1007/s00122-007-0578-1

    Article  CAS  PubMed  Google Scholar 

  10. Amirul Islam, F.M., Beebe, S., Muñoz, M., Tohme, J., Redden, R.J., and Basford, K.E., Using molecular markers to assess the effect of introgression on quantitative attributes of common bean in the Andean gene pool, Theor. Appl. Genet., 2004, vol. 108, p. 243.

    Article  CAS  Google Scholar 

  11. García-Martínez, S., Andreani, L., Garcia-Gusano, M., Geuna, F., and Ruiz, J.J., Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars, Genome, 2006, vol. 49, p. 648.

    Article  Google Scholar 

  12. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  13. Cresser, M.S. and Parsons, J.W., Sulphuric-perchloric acid digestion of plant material for the determination of nitrogen, phosphorus, potassium, calcium, and magnesium, Anal. Chim. Acta, 1979, vol. 109, p. 431. https://doi.org/10.1016/S0003-2670(01)84273-2

    Article  CAS  Google Scholar 

  14. Pequerul, A., Pérez, C., Madero, P., Val, J., and Monge, E., A rapid wet digestion method for plant analysis, Proc. Eighth Int. Colloquium for the Optimization of Plant Nutrition, August 31–September 8, 1992, Lisbon, Portugal, Dordrecht: Springer-Verlag, 1993, p. 3. https://doi.org/10.1007/978-94-017-2496-8_1

  15. Horwitz, W., Official Methods of Analysis of AOAC International, Gaithersburg, MD: Assoc. Off. Anal. Chem., Int., 2002.

    Google Scholar 

  16. Methods of Analysis, Vol. 973.31: Nitrites in Cured Meat. Colorimetric Method, Arlington, VA: Assoc. Off. Anal. Chem., 2000.

  17. ISO 6635:1984: Fruits, Vegetables and Derived Products—Determination of Nitrite and Nitrate Content—Molecular Absorption Spectrometric Method, Geneva: Int. Stand. Org., 1984.

  18. Mohammed, M., Wilson, L.A., and Gomes, P.I., Postharvest sensory and physiochemical attributes of processing and nonprocessing tomato cultivars, J. Food Qual., 1999, vol. 22, p. 167. https://doi.org/10.1111/j.1745-4557.1999.tb00549.x

    Article  Google Scholar 

  19. Hernández Suárez, M., Rodríguez-Rodríguez, E.M., and Díaz, C., Mineral and trace element concentrations in cultivars of tomatoes, Food Chem., 2007, vol. 104, p. 489. https://doi.org/10.1016/j.foodchem.2006.11.072

    Article  CAS  Google Scholar 

  20. Fehr, W.I., Principles of Cultivar Development: Theory and Technique, New York: Macmillan, 1987, vol. 1.

    Google Scholar 

  21. Ghislain, M., Zhang, D., Fajardo, D., Hanuman, Z., and Hijmans, R., Marker assisted sampling of the cultivated Andean potato (Solanum phureja) collection using RAPD markers, Genet. Res. Crop Evol., 1999, vol. 46, p. 547.

    Article  Google Scholar 

  22. Prevost, A. and Wilkinson, M.J., A new system of comparing PCR Primers applied to ISSR finger printing of potato cultivars, Theor. Appl. Genet., 1999, vol. 102, p. 440.

    Google Scholar 

  23. Giovanelli, G., Lavelli, V., Peri, C., and Nobili, S., Variation in antioxidant components of tomato during vine and post-harvest ripening, J. Sci. Food Agric., 1999, vol. 79, p. 1583.

    Article  CAS  Google Scholar 

  24. Thompson, K.A., Marshall, M.R., Sims, C.A., Wei, C.I., Sargent, S.A., and Scott, J.W., Cultivar, maturity and heat treatment on lycopene content in tomatoes, J. Food Sci., 2000, vol. 65, p. 791. https://doi.org/10.1111/j.1365-2621.2000.tb13588.x

    Article  CAS  Google Scholar 

  25. Tomatoes and Tomato Products: Nutritional, Medicinal and Therapeutic Properties, Preedy, V.R. and Watson, R.R., Eds., Boca Raton, FL: CRC Press, 2008.

    Google Scholar 

  26. Juroszek, P., Lumpkin, H.M., Yang, R., Ledesma, D.R., and Ma, C., Fruit quality and bioactive compounds with antioxidant activity of tomatoes grown on-farm: comparison of organic and conventional management systems, J. Agric. Food Chem., 2009, vol. 57, p. 1188. https://doi.org/10.1021/jf801992s

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, Z., Wang, M., and Wang, J., Nitrate and nitrite contamination in vegetables in China, Food Rev. Int., 2000, vol. 16, p. 61. https://doi.org/10.1081/fri-100100282

    Article  CAS  Google Scholar 

  28. Zoran, I.S., Nikolaos, K., and Ljubomir, Š., Tomato fruit quality from organic and conventional production, in Organic Agriculture Towards Sustainability, Pilipavicius, V., Ed., London: InTechOpen, 2014, p. 147.

  29. Dumas, Y., Dadomo, M., Di Lucca, G., and Grolier, P., Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes, J. Sci. Food Agric., 2003, vol. 83, p. 369. https://doi.org/10.1002/jsfa.1370

    Article  CAS  Google Scholar 

  30. Peng, Y., Gitelson, A.A., Keydan, G., Rundquist, D.C., and Moses, W., Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content, Remote Sens. Environ., 2011, vol. 115, p. 978. https://doi.org/10.1016/j.rse.2010.12.001

    Article  Google Scholar 

  31. Esteban, R., Barrutia, O., Artetxe, U., Fernández-Marín, B., Hernández, A., and García-Plazaola, J.I., Internal and external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach, New Phytol., 2014, vol. 206, p. 268. https://doi.org/10.1111/nph.13186

    Article  CAS  PubMed  Google Scholar 

  32. Shani, E., Salehin, M., Zhang, Y., Sanchez, S.E., Doherty, C., Wang, R., and Estelle, M., Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors, Curr. Biol., 2017, vol. 27, p. 437. https://doi.org/10.1016/j.cub.2016.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, M., Zheng, Q., Shen, Q., and Guo, S., The critical role of potassium in plant stress response, Int. J. Mol. Sci., 2013, vol. 14, p. 7370. https://doi.org/10.3390/ijms14047370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vance, C.P., Uhde-Stone, C., and Allan, D.L., Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource, New Phytol., 2003, vol. 157, p. 423. https://doi.org/10.1046/j.1469-8137.2003.00695.x

    Article  CAS  PubMed  Google Scholar 

  35. Zörb, C., Piepho, H., Zikeli, S., and Horneburg, B., Heritability and variability of quality parameters of tomatoes in outdoor production, Research, 2020, vol. 2020, art. ID 6707529. https://doi.org/10.34133/2020/6707529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alexander, J., Benford, D., Cockburn, A., Cravedi, J.-P., Dogliotti, E., Di Domenico, A., Fernández-Cruz, M.L., Fink-Gremmels, J., Fürst, P., Galli, C., Grandjean, P., Gzyl, J., Heinemeyer, G., Johansson, M., Mutti, A., et al., Nitrate in vegetables—scientific opinion of the panel on contaminants in the food chain, EFSA J., 2008, vol. 6, p. 689. https://doi.org/10.2903/j.efsa.2008.689

    Article  Google Scholar 

  37. Lairon, D., Nutritional quality and safety of organic food: a review, Agron. Sustainable Dev., 2010, vol. 30, p. 33. https://doi.org/10.1051/agro/2009019

    Article  CAS  Google Scholar 

  38. Nielsen, S.S., Food Analysis Laboratory Manual, Cham: Springer-Verlag, 2019.

    Book  Google Scholar 

  39. Abd El-Hady, E.A.A., Haiba, A.A.A., Abd El-Hamid, N.R., and Rizkalla, A.A., Phylogenetic diversity and relationships of some tomato varieties by electrophoretic protein and RAPD analysis, J. Am. Sci., 2010, vol. 6, p. 434.

    Google Scholar 

  40. Sharifova, S., Mehdiyeva, A., Theodorikas, K., and Roubos, K., Assessment of genetic diversity in cultivated tomato (Solanum lycopersicum L.) genotypes using RAPD primers, J. Hortic. Res., 2013, vol. 21, p. 83.

    Article  Google Scholar 

Download references

Funding

This research work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Sohag University offered the experimental place and lab supplies (devices and chemicals) for the researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Abdelkader.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelkader, M.M., Elsayed, H.M. Biodiversity of Photosynthetic Pigments, Macronutrients Uptake and Fruit Quality of Tomato Genotypes. Russ J Plant Physiol 69, 50 (2022). https://doi.org/10.1134/S1021443722030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030025

Keywords:

Navigation