Skip to main content
Log in

Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The recovery of ancient germplasm in tomato (Solanum lycopersicon L.) has become necessary to limit the wide genetic erosion caused by the employment of modern cultivars. Among germplasm collections, long shelf-life landraces could represent an important source of biodiversity. The present study provides a first set of molecular and phenotypic data on long shelf-life (so called “da serbo” in southern Italy) tomato collection, mainly originated from Sicily together with some landraces from Campania and Apulia. The analysis of fruit traits showed a low intra-varietal variation, while exhibiting a quite higher inter-varietal variability. Overall, the cultivars have been classified in six fruit shape classes of which flattened and slightly flattened included the 54.76 % of the collection. The principal component analysis (PCA) showed a large cluster in which almost all landraces from Sicily were included. The microsatellite (SSR) analysis confirmed a low intra-varietal variation, and the very low heterozygosity (Ho) revealed a high degree of homozygosity in these landraces. In accordance with limited morphological variability, the values of microsatellite polymorphism (PIC) showed a low genetic variability among these long shelf-life tomato cultivars. Cluster analysis based on 10 polymorphic SSR was not able to distinguish landraces for their different origin, while allowed to classify similar genotypes in four groups. Three groups showed a limited genetic distance while in a fourth largest and genetic variable cluster was included genotypes more selectable for traits of agronomic interest. Overall, the phenotypic and genetic variation allowed us to classify a collection of Sicilian long shelf-life tomato landraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez AE, van de Wie CCM, Smulders MJM (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292

    Article  CAS  Google Scholar 

  • Andreakis N, Giordano I, Pentangelo A, Fogliano V, Graziani G, Monti LM, Rao R (2004) DNA fingerprinting and quality traits of corbarino cherry-like tomato landraces. J Agric Food Chem 52:3366–3371

    Article  CAS  PubMed  Google Scholar 

  • Barbagallo RN, Chisari M, Branca F, Argento S, Spagna G (2006) Enzymatic degradative trait in long storage Sicilian tomato fruits (Lycopersicon esculentum Mill.). Italus Hortus 13:622-625

  • Barbagallo RN, Chisari M, Branca F, Spagna G (2008) Pectin methylesterase, polyphenol oxidase and physicochemical properties of typical long-storage cherry tomatoes cultivated under water stress regime. J Sci Food Agric 88:389–396

    Article  CAS  Google Scholar 

  • Benor S, Zhang M, Wang Z, Zhang H (2008) Assessment of genetic variation in tomato (Solanum lycopersicum) inbred lines using SSR molecular markers. J Genet Genom 35:373–379

    Article  CAS  Google Scholar 

  • Bredemeijer G, Cooke R, Ganal M, Peeters R, Isaac P, Noordijk Y, Rendell S, Jackson J, Röder MS, Wendehake K, Dijcks M, Amelaine M, Wickaert K, Bertrand L, Vosman B (2002) Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor Appl Genet 105:1019–1026

    Article  PubMed  Google Scholar 

  • Breto MP, Asins MJ, Carbonell EA (1993) Genetic variability in Lycopersicon species and their genetic relationships. Theor Appl Genet 86:113–120

    Article  CAS  PubMed  Google Scholar 

  • Bruni A (1855) Degli ortaggi e loro coltivazione presso la città di Napoli. Rivista agronomica, giornale di agricoltura, pastorizia, veterinaria e scienze affini. Annuario della Reale Scuola Superiore d’Agricoltura in Portici, vol I Stab Tip 1855-57-58 Napoli

  • Caramante M, Rao R, Monti LM, Corrado G (2009) Discrimination of ‘San Marzano’ accessions: a comparison of minisatellite, CAPS and SSR markers in relation to morphological traits. Sci Hortic 120:560–564

    Article  CAS  Google Scholar 

  • Caramante M, Corrado G, Monti LM, Rao R (2011) Simple sequence repeats are able to trace tomato cultivars in tomato food chains. Food Control 22:549–554

    Article  CAS  Google Scholar 

  • Casals J, Pascual L, Cañizares J, Cebolla-Cornejo J, Casañas F, Nuez F (2012) Genetic basis of long shelf life and variability into Penjar tomato. Genet Resour Crop Evol 59:219–229

    Article  Google Scholar 

  • Cebolla-Cornejo J, Roselló S, Nuez F (2013) Phenotypic and genetic diversity of Spanish tomato landraces. Sci Hortic 162:150–164

    Article  Google Scholar 

  • Chen J, Wang H, Shen H, Chai M, Li J, Qi M, Yang W (2009) Genetic variation in tomato populations from four breeding programs revealed by single nucleotide polymorphism and simple sequence repeat markers. Sci Hortic 122:6–16

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle LJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Figás MR, Prohens J, Raigón MD, Fernández-de-Córdova P, Fita A, Soler S (2014) Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool tomato analyzer. Genet Resour Crop Evol. doi:10.1007/s10722-014-0142-1

  • Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  CAS  PubMed  Google Scholar 

  • García-Martínez S, Andreani L, Garcia-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49:648–656

    Article  PubMed  Google Scholar 

  • García-Martínez S, Corrado G, Ruiz JJ (2013) Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genet Resour Crop Evol 60:789–798

    Article  Google Scholar 

  • Geethanjali S, Chen KY, Pastrana DV, Wang JF (2010) Development and characterization of tomato SSR markers from genomic sequences of anchored BAC clones on chromosome 6. Euphytica 173:85–97

    Article  CAS  Google Scholar 

  • He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363–373

    CAS  PubMed  Google Scholar 

  • Huang X, Börner A, Röder M, Ganal M (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Mazzucato A, Papa R, Bitocchi R, Pietro P, Nanni L, Negri V, Picarella ME, Siligato F, Soressi GP, Tiranti B, Veronesi F (2008) Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theor Appl Genet 116:657–669

    Article  PubMed  Google Scholar 

  • Mazzucato A, Ficcadenti N, Caioni M, Mosconi P, Piccinini E, Sanampudi VRR, Sestili S, Ferrari V (2010) Genetic diversity and distinctiveness in tomato (Solanum lycopersicum L.) landraces: the Italian case study of ‘A pera Abruzzese’. Sci Hortic 125:55–62

    Article  CAS  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  PubMed  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H (2009) Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breed 23:685–691

    Article  CAS  Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Park YH, West MA, St. Clair DA (2004) Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopersicon esculentum L.). Genome 47:510–518

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Pressoir G, Berthaud J (2004) Population structure and strong divergent selection shape phenotypic diversification in maize landraces. Heredity 92:95–101

    Article  CAS  PubMed  Google Scholar 

  • Primieri Carelli BP, Tseng L, Gerald S, Grazziotin FG, Echeverrigarays S (2006) Genetic diversity among Brazilian cultivars and landraces of tomato Lycopersicon esculentum Mill. revealed by RAPD markers. Genet Resour Crop Evol 53:395–400

    Article  Google Scholar 

  • Rick CM (1976) Tomato. Lycopersicon esculentum (Solanaceae). In: Simmonds N (ed) Evolution of crop plants. Longman, London, pp 268–273

    Google Scholar 

  • Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot 44:69–78

    Article  Google Scholar 

  • Rick CM, Laterrot H, Philouze J (1990) A revised key for the Lycopersicon species. Tomato Genet Coop Rep 40:31

    Google Scholar 

  • Riggi E, Patanè C, Cosentino SL (2006) Contenuto di composti antiossidanti in ecotipi di pomodoro da serbo del Meridione d’Italia. Italus Hortus 13:779–782

    Google Scholar 

  • Savo Sardaro ML, Marmiroli M, Maestri E, Marmiroli N (2013) Genetic characterization of Italian tomato varieties and their traceability in tomato food products. Food Sci Nutr 1:54–62

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality complete samples. Biometrika 52:591–611

    Article  Google Scholar 

  • Sharma KC, Verma S (2001) Analysis of genetic divergence in tomato. Ann Agric Res 22:71–73

    Google Scholar 

  • Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248

    Article  Google Scholar 

  • Stevens MR, Robbins MD (2007) Molecular markers in selection of tomato germplasm. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2, tomato. Science Publishers, Enfield, pp 239–260

    Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terzopoulos PJ, Bebeli PJ (2010) Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Sci Hortic 126:138–144

    Article  Google Scholar 

  • Villand J, Skroch PW, Lai T, Hanson P, Kuo CG, Nienhuis J (1998) Genetic variation among tomato accessions from primary and secondary centers of diversity. Crop Sci 38:1339–1347

    Article  Google Scholar 

  • Wang J, Tian L, Lee HS, Wei NE, Jiang H, Watson B, Madlung A, Osborn TC, Doerge RW, Comai L, Chen ZJ (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517

  • Weber JL (1990) Informativeness of human (dC-dA)n(dG-dT)n polymorphisms. Genomics 7:524–530

    Article  CAS  PubMed  Google Scholar 

  • Williams CE, St. Clair DA (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630

    Article  CAS  PubMed  Google Scholar 

  • Yi SS, Jato SA, Fujimura T, Yamanaka S, Watanabe J, Watanabe KN (2008) Potential loss of unique genetic diversity in tomato landraces by genetic colonization of modern cultivars at a non-center of origin. Plant Breed 127:189–196

    Article  CAS  Google Scholar 

  • Zeven AC (1998) Landraces: a review of definitions and classifications. Euphytica 104:127–139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sunseri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercati, F., Longo, C., Poma, D. et al. Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genet Resour Crop Evol 62, 721–732 (2015). https://doi.org/10.1007/s10722-014-0191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0191-5

Keywords

Navigation