Skip to main content
Log in

24-Epibrassinolide Mediated Interaction among Antioxidant Defense, Lignin Metabolism, and Phytohormones Signaling Promoted Better Cooperative Elongation of Maize Mesocotyl and Coleoptile under Deep-Seeding Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Both mesocotyl and coleoptile synergistic elongation of maize are the major causes of its deep-seeding tolerance. To elucidate the physiological mechanism of their elongation induced by brassinosteroid under deep-seeding stress, seeds of deep-seeding tolerant N192, W64 and intolerant Ji853, K12 were treated with 4.16 × 10–3 M exogenous 24-epibrassinolide (EBR) under 3 or 20 cm seeding depths. The cumulative mesocotyl/coleoptile length reached a maximum of 8.37/5.02 cm on the 12th day of growth at lack of seeding depths in darkness, maximum cumulative seedling length was 21.25 cm on the 22th day; There were complex linear relationships between the four growth parameters of seedlings (maximum cumulative mesocotyl/coleoptil/total mesocotyl and coleoptile/seedling length) and seed characteristics (seed size, weight, physical properties, reserves) by Pearson correlation analysis and path analysis, further using the seed characteristics to establish four optimal regression equations to predict their growth parameters. 4.16 × 10–3 M exogenous EBR application changed both mesocotyl and coleoptile enzymes system, alleviated the reactive oxygen species damage, decreased lignin accumulation, and regulated phytohormones level and polar transport in maize under 20 cm stress, resulting in 26.20, 4.37, 17.53, and 16.33% increase on mesocotyl length, coleoptile length, mesocotyl and coleoptile total length, and ratio of mesocotyl to coleoptile to normally germinate of seedlings under deep soil layer. Additionally, the expression of Zm00001d033286 (PAL), GRMZM2G159393 (YUCCA2), GRMZM2G017187 (ARF9), MSTRG.30577 (BIN2), and GRMZM2G413006 (TCH4) changed in parallel with mesocotyl and coleoptile elongation under different treatments. Therefore, EBR, regulatory role in maize mesocotyl and coleoptile elongation, can promote its safety production in arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zhang, H.W., Ma, P., Zhao, Z.N., Zhao, G.W., Tian, B.H., Wang, J.H., and Wang, G.Y., Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length, Theor. Appl. Genet., 2012, vol. 124, p. 223.

    Article  Google Scholar 

  2. Liu, H.J., Zhang, L., Wang, J.C., Li, C.S., Zeng, X., Xie, S.P., Zhang, Y.Z., Liu, S.S., Hu, S.L., Wang, J.H., Lee, M., Lubberstedt, T., and Zhao, G.W., Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population, Front. Plant Sci., 2017, vol. 8, p. 813.

    Article  Google Scholar 

  3. Brown, P.R., Singleton, G.R., Tann, C.R., and Mock, I., Increasing sowing depth to reduce mouse damage to winter crops, Crop Prot., 2003, vol. 22, p. 653.

    Article  Google Scholar 

  4. Satoko, Y., Yasuhiro, Y., Hoshiko, Y., Morio, M., and Kensuke, O., Yield and quality of bird-resistant sunflower cultivars found in genetic resources, Plant Prod. Sci., 2012, vol. 15, p. 23.

    Article  Google Scholar 

  5. van Delft, G.J., Graves, J.D., Fitter, A.H., and van Ast, A., Striga seed avoidance by deep planting and no-tillage in sorghum and maize, Int. J. Pest Manage., 2000, vol. 46, p. 251.

    Article  Google Scholar 

  6. Niu, L.J., Hao, R.Q., Wu, X.L., and Wang, W., Maize mesocotyl: role in response to stress and deep-sowing tolerance, Plant Breed., 2020, vol. 139, p. 466.

    Article  CAS  Google Scholar 

  7. Li, G.Q., Bai, G.H., Carver, B.F., Elliot, N.C., Bennett, R.S., Wu, Y.Q., Hunger, R., Bonman, J.M., and Xu, X.Y., Genome-wide association study reveals genetic architecture of coleoptile length in wheat, Theor. Appl. Genet., 2017, vol. 130, p. 391.

    Article  CAS  Google Scholar 

  8. Zhan, J.H., Lu, X., Liu, H.Y., Zhao, Q.Z., and Ye, G.Y., Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): a review of physiological and genetic basis, Planta, 2020, vol. 251, p. 27.

    Article  CAS  Google Scholar 

  9. Cona, A., Cenci, F., Cervelli, M., Federico, R., Mariottini, P., Moreno, S., and Angelini, R., Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl, Plant Physiol., 2003, vol. 131, p. 803.

    Article  CAS  Google Scholar 

  10. Zhao, X.Q. and Zhong, Y., Research progress of physiological response and molecular genetic mechanism under deep-seeding stress in maize seeds, Mol. Plant Breed., 2021, vol. 19, p. 2381.

    Google Scholar 

  11. Kutschera, U. and Wang, Z.Y., Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation, Protoplasma, 2016, vol. 253, p. 3.

    Article  CAS  Google Scholar 

  12. Zhang, T.Z., Li, Y.S., Li, Y., Yao, H.M., Zhao, J., Wang, C., Zhao, Y., Wang, H.N., Fang, Y.F., and Hu, J., Physiological mechanism regulating light-induced mesocotyl elongation by polyamine oxidase (PAO) in maize, Acta Agron. Sin., 2016, vol. 42, p. 734.

    Article  Google Scholar 

  13. Pan, B.R., Zhong, T.L., and Zhao, G.W., Promoting deep-sowing germinability of corn (Zea mays) by seed soaking with gibberellic acid, Arch. Agron. Soil Sci., 2017, vol. 63, p. 1314.

    Article  CAS  Google Scholar 

  14. Zhao, G., Fu, J., Wang, G., Ma, P., Wu, L., and Wang, J., Gibberellin-induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-4, Plant Breed., 2010, vol. 129, p. 87.

    Article  CAS  Google Scholar 

  15. Zhao, G.W. and Wang, J.H., Effect of auxin on mesocotyl elongation of darkgrown maize under different seeding depth, Russ. J. Plant Physiol., 2010, vol. 57, p. 79.

    Article  CAS  Google Scholar 

  16. Gao, Y.H., Jiang, H.Y., Wu, B., Niu, J.Y., Li, Y.J., Guo, F., Wang, L., and Blakney, A.J.C., The effects of planting density on lodging resistance, related enzyme activities, and grain yield in different denotypes of oilseed flax, Crop Sci., 2018, vol. 58, p. 2613.

    Article  Google Scholar 

  17. Hasanuzzaman, M., Mahabub-Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K., and Fujita, M., Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties, BioMed Res. Int., 2014, vol. 2014, art. ID 757219. https://doi.org/10.1155/2014/757219

    Article  PubMed  PubMed Central  Google Scholar 

  18. Troyer, A.F., The location of genes governing long first internode of corn, Genetics, 1997, vol. 145, p. 1149.

    Article  CAS  Google Scholar 

  19. Takahashi, H., Sato, K., and Takeda, K., Mapping genes for deep-seeding tolerance in barley, Euphytica, 2001, vol. 122, p. 37.

    Article  CAS  Google Scholar 

  20. Peng, Y.L., Zhao, X.Q., Yan, H.P., and Wu, J.H., Deep-sowing tolerance and genetic diversity of maize inbred lines, Acta Pratacult. Sin., 2016, vol. 25, p. 73.

    Google Scholar 

  21. Dong, L., Qin, L., Dai, X.R., Ding, Z.H., Bi, R., Liu, P., Chen, Y.H., Brutnell, T., Wang, X.L., and Li, P.H., Transcriptomic analysis of leaf sheath maturation in maize, Int. J. Mol. Sci., 2019, vol. 20, p. 2472.

    Article  CAS  Google Scholar 

  22. Karpinska, B., Karlsson, M., Schinkel, H., Streller, S., Suss, K.H., Melzer, M., and Wingsle, G., A novel superoxide dismutase with a high isoelectric point in higher plants expression, regulation, and protein localization, Plant Physiol., 2001, vol. 126, p. 1668.

    Article  CAS  Google Scholar 

  23. Siqueira-Soares, R.D.C., Soares, A.R., Parizotto, A.V., Ferrarese, M.D.L.L., and Ferrarese-Fiho, O., Root growth and enzymes related to the lignification of maize seedlings exposed to the allelochemical L-DOPA, Sci. World J., 2013, vol. 2013, art. ID 134237.

    Article  Google Scholar 

  24. Du, J.Y., Zhang, G.R., Cai, A.J., Liu, Y.F., Gao, G.H., and Jin, Z.Z., Relationship between the mesocotyl elongation and hormones in maize (Zea mays L.), J. Maize Sci., 2008, vol. 16, p. 70.

    CAS  Google Scholar 

  25. Zhao, G.W., Ma, P., Wang, J.H., and Wang, G.Y., Identification of deep-seeding tolerance in different maize inbred lines and their physiological response to deep-seeding condition, J. Maize Sci., 2009, vol. 17, p. 9.

    Google Scholar 

  26. Wang, G.L., Que, F., Xu, Z.S., Wang, F., and Xiong, A.S., Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot, Protoplasma, 2016, vol. 254, p. 839.

    Article  Google Scholar 

  27. Zhao, M., Zhang, H.X., Yan, H., Qiu, L., and Baskin, C., Mobilization and role of starch, protein, and fat reserves during seed germination of six wild grassland species, Front. Plant Sci., 2018, vol. 9, p. 234.

    Article  Google Scholar 

  28. Bhattarai, S. and Biligetu, B., Effects of seed size, seed pod removal and temperature on seed germination of Onobrychis viciifolia, Seed Sci. Technol., 2018, vol. 46, p. 113.

    Article  Google Scholar 

  29. Tanveer, M., Role of 24-epibrassinolide in inducing thermos-tolerance in plants, J. Plant Growth Regul., 2019, vol. 38, p. 945.

    Article  CAS  Google Scholar 

  30. Zhang, H.X., Gan, L.J., and Xia, K., Synergistic effects of 24-epbrassinolide and auxin in promotion of coleoptile elongation in barley, J. Nanjing Agric. Univ., 2006, vol. 29, p. 23.

    Google Scholar 

Download references

Funding

The study was partially supported by the Research Program Sponsored by Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (project. nos. GSCS-2019-8 and GSCS-2020-5), the National Natural Science Foundation of China (project no. 32060486), the Scientific Research Start-up Funds for Openly-recruited Doctors, Science and Technology Innovation Funds of Gansu Agricultural University, China (project. nos. GAU-KYQD-2018-19 and GAU-KYQD-2018-12), the Developmental Funds of Innovation Capacity in Higher Education of Gansu, China (project. nos. 2019A-052 and 2019A-054), the Transverse Project of Lanzhou Qinglü Instrument and Technology Company, China (project no. WT20191025), and the Special Funds from the Central Finance of China in Support of the Development of Local Colleges and Universities (project no. ZCYD-2020-5).

Author information

Authors and Affiliations

Authors

Contributions

Authors X.Q. Zhao and Y. Zhong contributed equally to the work.

Corresponding author

Correspondence to X. Q. Zhao.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: APX—ascorbate peroxidase; CAT—catalase; Cis-ZT—cis-zeatin; EBR—24-epibrassinolide; JA—jasmonic acid; PAL— phenylalanine ammonia-lyase; POD—peroxidase; SA—salicylic acid; SOD—superoxide dismutase; Trans-ZT— trans-zeatin.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X.Q., Zhong, Y. 24-Epibrassinolide Mediated Interaction among Antioxidant Defense, Lignin Metabolism, and Phytohormones Signaling Promoted Better Cooperative Elongation of Maize Mesocotyl and Coleoptile under Deep-Seeding Stress. Russ J Plant Physiol 68, 1194–1207 (2021). https://doi.org/10.1134/S1021443721060224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721060224

Keywords:

Navigation