Skip to main content
Log in

Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Deep-seeding tolerant seeds can emerge from deep soil where the moisture is suitable for seed germination. Breeding deep-seeding tolerant cultivars is becoming increasingly important in arid and semi-arid regions. To dissect the quantitative trait loci (QTL) controlling deep-seeding tolerance traits, we selected a tolerant maize inbred line 3681-4 and crossed it with the elite inbred line-X178 to generate an F2 population and the derivative F2:3 families. A molecular linkage map composed of 179 molecular markers was constructed, and 25 QTL were detected including 10 QTL for sowing at 10 cm depth and 15 QTL for sowing at 20 cm depth. The QTL analysis results confirmed that deep-seeding tolerance was mainly caused by mesocotyl elongation and also revealed considerable overlap among QTL for different traits. To confirm a major QTL on chromosome 10 for mesocotyl length measured at 20 cm depth, we selected and self-pollinated a BC3F2 plant that was heterozygous at the markers around the target QTL and homozygous at other QTL to generate a BC3F3 population. We found that this QTL explained more phenotypic variance in the BC3F3 population than that in the F2 population, which laid the foundation for fine mapping and NIL (near-isogenic line) construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AOSA (1983) Seed vigor testing handbook. AOSA, Lincoln

    Google Scholar 

  • Asghar MJ, Khan IA (2005) Variability for seedling vigour in two maize (Zea mays L.) populations I: means, variance components and heritabilities. Pak J Biol Sci 8(6):839–843

    Article  Google Scholar 

  • Brown PR, Singleton GR, Tann CR, Mock I (2003) Increasing sowing depth to reduce mouse damage to winter crops. Crop Protect 22:653–660

    Article  Google Scholar 

  • Cervantes-Ortiz F, García-De G, Carballo-Carballo A, Bergvinson D, Crossa JL, Mendoza-Elos M, Moreno-Martínez E (2007) Seedling vigor inheritance and its relationship to adult plant traits in inbred tropical maize lines. Agrociencia 41:425–433

    Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105(5):745–753

    Article  PubMed  CAS  Google Scholar 

  • Dungan GH (1950) Response of corn to extremely deep planting. Agrom J 42:256–257

    Article  Google Scholar 

  • Flint LH (1944) Light and the elongation of the mesocotyl in corn. Plant physiol 19:537–543

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Wen TJ, Ronin YI, Chen HD, Guo L, Mester DI, Yang Y, Lee M, Corol AB, Ashlock DA, Schnable PS (2006) Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174:1671–1683

    Article  PubMed  CAS  Google Scholar 

  • Han LZ, Qiao YL, Zhang SY, Zhang YY, Cao GL, Kim JH, Lee KS, Koh HJ (2007) Identification of quantitative trait loci for cold response of seedling Vigor traits in rice. J Genet Genom 34(3):239–246

    Article  CAS  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Hoshikaw K (1969) Underground organs of the seedlings and the systematics of Gramineae. Bot Gazette 130:192–203

    Article  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    Article  PubMed  CAS  Google Scholar 

  • Li HH, Ribaut JM, Li ZL, Wang JK (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Mapping genetic mapping with MAPMAKER/EXP3.0. Whitehead Institute Technical Report, Cambridge

    Google Scholar 

  • Lu XL, Niu AL, Cai HY, Zhao Y, Liu JW, Zhu YG, Zhang ZH (2007) Genetic dissection of seedling and early vigor in a recombinant inbred line population of rice. Plant Sci 172:212–220

    Article  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinosita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • Mehdi SS, Ahsan M (2000) Coefficient of variation, inter-relationship and heritability estimates for some seedling traits in maize in C1 recurrent selection cycle. Pak J Biol Sci 3(1):181–182

    Article  Google Scholar 

  • Molatudi RL, Mariga IK (2009) Then effect of maize seed size and depth of planting on seedling emergence and seedling vigour. J Appl Sci Res 5(12):2234–2237

    Google Scholar 

  • Perry DA (1987) Handbook of vigor test methods. International Seed Testing Association, Zurich

    Google Scholar 

  • Polthanee A (2001) Effect of seeding depth and soil mulching on growth and yield of peanut grown after rice in the post-monsoon season of northeastern Thailand. Plant Prod Sci 4:235–240

    Article  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W, Moller EM, Rober FK, Knaak C, Ernst K, Westhoff P, Geiger HH (2007) Quantitative trait loci for early plant vigor of maize grown in chilly environments. Theor Appl Genet 114:1059–1070

    Article  PubMed  Google Scholar 

  • Qiu FZ, Zheng YL, Zhang ZL, Xu SZ (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  Google Scholar 

  • Rebetzke GJ, Appels R, Morrison AD, Richards RA, McDonald G, Ellis MH, Spielmeyer W, Bonnett DG (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigor in wheat (Triticum aestivum L). Aust J Agric Res 52:1221–1234

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Bruce SE, Kirkegaard JA (2005) Longer coleoptile improve emergence through crop residues to increase seedling number and biomass in wheat (Triticum aestivum L.). Plant Soil 272:87–100

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007a) Genotypic increases in coleoptile length improves stand establishment, vigor and grain yield of deep-sown wheat. Field Crop Res 100:10–23

    Article  Google Scholar 

  • Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007b) Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L). Theor Appl Genet 114:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Redonna ED, Mackill DJ (1996) Genetic variation for seedling vigor traits in rice. Crop Sci 36:285–290

    Article  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:1376–11381

    Article  Google Scholar 

  • SAS Institute (2000) SAS user’s guide version 8.0. SAS Institute, Cary

    Google Scholar 

  • Schillinger WF, Donaldson E, Allan RE, Jones SS (1998) Winter wheat seedling emergence from deep sowing depths. Agron J 90:582–586

    Article  Google Scholar 

  • Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Hyles J, Joaquim P, Azanza F, Bonnett D, Ellis ME, Moore C, Richards RA (2007) A QTL on chromosome 6A in bread wheat (Triticum aestivum) is associated with longer coleoptile, greater seedling vigor and final plant height. Theor Appl Genet 115:59–66

    Article  PubMed  CAS  Google Scholar 

  • Suge H, Nishizawa T, Takahashi H, Takeda K (1998) Inheritance of the first internode elongation due to deep-seeding and ethylene treatment in wheat. Breed Sci 48:151–157

    Google Scholar 

  • Takahashi H, Sato K, Takeda K (2001) Mapping genes for deep-seeding tolerance in barley. Euphytica 122:37–43

    Article  CAS  Google Scholar 

  • Takeda K, Takahashi H (1999) Varietal variation for the deep-seeding tolerance in barley and wheat. Breed Res 1:1–8

    Google Scholar 

  • Takeda K, Zhao L, Zhang J, Lin U, Mano Y (1995) Selection tests of barley and wheat varieties in the Heilonggang region of China. Proc China-Japan Joint Symp 3–5:87–90

    Google Scholar 

  • Troyer AF (1997) The location of genes governing long first internode of corn. Genetics 145:1149–1154

    PubMed  CAS  Google Scholar 

  • Turner FT, Chen CC, Bollich CN (1982) Coleoptile and mesocotyl lengths in semi-dwarf rice seedlings. Crop Sci 22:43–46

    Article  Google Scholar 

  • VanDelft GJ, Graves JD, Fitter AH, Van AA (2000) Striga seed avoidance by deep planting and no-tillage in sorghum and maize. Int J Pest Manage 46:251–256

    Article  Google Scholar 

  • VanBerloo R (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

    Article  CAS  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart)

  • Zhang ZH, Yu SB, Yu T, Huang Z, Zhu YG (2005a) Mapping quantitative trait loci (QTLs) for seedling-vicror using recombinant inbred lines of rice (Oryza sativa L.). Field Crop Res 91:161–170

    Article  Google Scholar 

  • Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG (2005b) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Ann Bot 95(3):423–429

    Article  PubMed  CAS  Google Scholar 

  • Zhao GW, Ma P, Wang JH, Wang GY (2009) Identification of deep-seeding tolerance in different maize inbred lines and their physiological response to deep-seeding condition. J Maize Sci (Chinese) 17:9–13

    Google Scholar 

  • Zhao GW, Wang JH (2008) Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod Sci 11:423–429

    Article  CAS  Google Scholar 

  • Zhao GW, Wang JH (2010) Effect of auxin on mesocotyl elongation of dark-grown maize under different seeding depths. Russ J Plant Physiol 57:79–86

    Article  CAS  Google Scholar 

  • Zheng PZ, Allen WB, Roesler K, Williams ME, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong GY, Tarczynski MC, Shen B (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Wang JK, Yi Q, Wang YZ, Zhu YG, Zhang ZH (2007) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crop Res 100:294–301

    Article  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the effort of Prof. Mingliang Xu and Dr. Qing Li from China Agricultural University for their check of this manuscript. We also thank Dr. Lin Li from University of Minnesota for his help in phenotypic data analysis. This research was supported by the National Natural Science Foundation of China (30971792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Wang.

Additional information

Communicated by T. Luebberstedt.

H. Zhang and P. Ma have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2011_1700_MOESM1_ESM.tif

Supplementary Fig. 1: The response of mesocotyl length, coleoptile length and seedling length to different sowing depth. * means significantly different from its left value at the 0.05 level. Black means maize inbred line 3681-4, red means X178. a, Response of mesocotyl to sowing depth. b, Response of coleoptile to sowing depth. c, Response of seedling length to sowing depth. (TIFF 1247 kb)

122_2011_1700_MOESM2_ESM.tif

Supplementary Fig. 2: The genotypic graph of the starting BC3F2 plant which was selfed to produce the BC3F3 population. The number at the bottom of each linkage map correspond to the chromosome name of the maizegdb maps (TIFF 974 kb)

122_2011_1700_MOESM3_ESM.tif

Supplementary Fig. 3: Confirmation qMES20-10 in another BC3F3 population. a, Distribution of mesocotyl length at 20 cm depth based on the genotype of SSR marker bnlg1028, B means homozygous 3681-4, H means heterozygous, A means homozygous X178; b, Confirmation of qMES20-10 based on QTL Cartographer Version 2.5, the SSR markers used were umc1280, umc1506, bnlg1028, bnlg153, bnlg2190, the LOD value and PVE (phenotypic variance explained) were 14.22 and 29.03%, respectively. (TIFF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Ma, P., Zhao, Z. et al. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor Appl Genet 124, 223–232 (2012). https://doi.org/10.1007/s00122-011-1700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1700-y

Keywords

Navigation