Skip to main content
Log in

Gold Nanoparticles in Plant Physiology: Principal Effects and Prospects of Application

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This review deals with the influence of gold nanoparticles on physiological processes (responses) in higher plants. Gold nanoparticles can affect a lot of processes in the plant organism, including growth rate, parameters of water exchange, activity of the photosynthetic apparatus and the antioxidant system, and expression of some genes important for the functioning of plants under optimal and adverse conditions, which was shown in plants belonging to different taxonomic groups. Analysis of literature data suggests that gold nanoparticles may be used not only as stimulators of growth and development but also as adaptogens improving plant resistance to various adverse influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Niemeyer, C.M. and Mirkin, C.A., Nanobiotechnology: Concepts, Applications and Perspectives, Weinheim: Wiley, 2004.

    Book  Google Scholar 

  2. Hossain, Z., Mustafa, G., and Komatsu, S., Plant responses to nanoparticle stress, Int. J. Mol. Sci., 2015, vol. 16, p. 26644. https://doi.org/10.3390/ijms161125980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saranya, S., Aswani, R., Remakanthan, A., and Radhakrishnan, E.K., Nanotechnology in agriculture, in Nanotechnology for Agriculture: Advances for Sustainable Agriculture, Panpatte, D.G. and Jhala, Y.K., Eds., New York: Springer-Verlag, 2019, p. 1.

    Book  Google Scholar 

  4. Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.-J., Quigg, A., Santschi, P.H., and Sigg, L., Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicology, 2008, vol. 17, p. 372. https://doi.org/10.1007/s10646-008-0214-0

    Article  CAS  PubMed  Google Scholar 

  5. Andrusishina, I.N., Metal nanoparticles: production methods, physicochemical properties, research methods, and toxicity assessment, Ukr. Zh. Sovrem. Probl. Toksikol., 2011, no. 3, p. 5.

  6. Dykman, L. and Khlebtsov, N., Gold nanoparticles in biomedical applications: recent advances and perspectives, Chem. Soc. Rev., 2012, vol. 41, p. 2256.

    Article  CAS  Google Scholar 

  7. Husen, A. and Siddiqi, K.S., Phytosynthesis of nanoparticles: concept, controversy and application, Nanoscale Res. Lett., 2014, vol. 9: 229. https://doi.org/10.1186/1556-276X-9-229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ditta, A., Arshad, M., and Ibrahim, M., Nanoparticles in sustainable agricultural crop production: applications and perspectives, in Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants, Siddiqui, M.H., Al-Whaibi, M.H., and Mohammad, F., Eds., New York: Springer-Verlag, 2015, p. 55.

    Google Scholar 

  9. Thul, S.T. and Sarangi, B.K., Implications of nanotechnology on plant productivity and its rhizospheric environment, in Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants, Siddiqui, M.H., Al-Whaibi, M.H., and Mohammad, F., Eds., New York: Springer-Verlag, 2015, p. 37.

    Google Scholar 

  10. Rai, P.K., Kumar, V., Lee, S., Raza, N., Kim, K.-H., Ok, Y.S., and Tsang, D.C.W., Nanoparticle-plant interaction: implications in energy, environment, and agriculture, Environ. Int., 2018, vol. 119, p. 1. https://doi.org/10.1016/j.envint.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  11. Elemike, E., Uzoh, I.M., Onwudiwe, D.C., and Babalola, O.O., The role of nanotechnology in the fortification of plant nutrients and improvement of crop production, Appl. Sci., 2019, vol. 9, p. 499. https://doi.org/10.3390/app9030499

    Article  CAS  Google Scholar 

  12. Masarovičová, E. and Kráľová, K., Metal nanoparticles and plants, Ecol. Chem. Eng. S, 2013, vol. 20, p. 9. https://doi.org/10.2478/eces-2013-0001

    Article  CAS  Google Scholar 

  13. Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Interaction of nanoparticles with edible plants and their possible implications in the food chain, J. Agric. Food Chem., 2011, vol. 59, p. 3485. https://doi.org/10.1021/jf104517j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Unrine, J.M., Shoults-Wilson, W.A., Zhurbich, O., Bertsch, P.M., and Tsyusko, O.V., Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain, Environ. Sci. Technol., 2012, vol. 46, p. 9753. https://doi.org/10.1021/es3025325

    Article  CAS  PubMed  Google Scholar 

  15. Siddiqi, Kh.S. and Husen, A., Engineered gold nanoparticles and plant adaptation potential, Nanoscale Res. Let., 2016, vol. 11, p. 400. https://doi.org/10.1186/s11671-016-1607-2

    Article  CAS  Google Scholar 

  16. Judy, J.D., Unrine, J.M., and Bertsch, P.M., Evidence for biomagnification of gold nanoparticles within a terrestrial food chain, Environ. Sci. Technol., 2011, vol. 45, p. 776. https://doi.org/10.1021/es103031a

    Article  CAS  PubMed  Google Scholar 

  17. Rizwan, M., Ali, Sh., Qayyum, M.F., Ok, Y.S., Adrees, M., Ibrahim, M., Zia-ur-Rehman, M., Farid, M., and Abbas, F., Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review, J. Hazard. Mater., 2016, vol. 322, p. 2. https://doi.org/10.1016/j.jhazmat.2016.05.061

    Article  CAS  PubMed  Google Scholar 

  18. Gunjan, B., Zaidi, M.G.H., and Sandeep, A., Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea, J. Plant Biochem. Physiol., 2014, vol. 2. https://doi.org/10.4172/2329-9029.1000133

  19. Mura, S., Greppi, G., and Irudayaraj, J., Latest developments of nanotoxicology in plants, in Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants, Siddiqui, M.H., Al-Whaibi, M.H., and Mohammad, F., Eds., New York: Springer-Verlag, 2015, p. 125.

    Google Scholar 

  20. Das, S., Debnath, N., Pradhan, S., and Goswami, A., Enhancement of photon absorption in the light-harvesting complex of isolated chloroplast in the presence of plasmonic gold nanosol – a nanobionic approach towards photosynthesis and plant primary growth augmentation, Gold Bull., 2017, vol. 50, p. 247. https://doi.org/10.1007/s13404-017-0214-z

    Article  CAS  Google Scholar 

  21. Avellan, A., Yun, J., Zhang, Y., Spielman-Sun, E., Unrine, J.M., Thieme, J., Li, J., Lombi, E., Bland, G., and Lowry, G.V., Nanoparticle size and coating chemistry control foliar uptake pathways, translocation and leaf-to-rhizosphere transport in wheat, ACS Nano, 2019, vol. 13, p. 5291. https://doi.org/10.1021/acsnano.8b09781

    Article  CAS  PubMed  Google Scholar 

  22. Jampíek, J. and Kráľová, K., Beneficial effects of metal- and metalloid-based nanoparticles on crop production, in Nanotechnology for Agriculture: Advances for Sustainable Agriculture, Panpatte, D.G. and Jhala, Y.K., Eds., New York: Springer-Verlag, 2019, p. 161.

    Google Scholar 

  23. Dykman, L.A., Bogatyrev, V.A., sokolov, O.I., Plotnikov, V.K., Repko, N.V., and Salfetnikov, A.A., Interaction of gold, silver and magnesium nanoparticles with plants, Nauchn. Zh. Kuban. Gos. Agrar. Univ., 2016, no. 6, p. 675.

  24. Dykman, L.A. and Shchegolev, S.Yu., Interaction of plants with noble metal nanoparticles, S-kh. Biol., 2017, vol. 52, p. 13. https://doi.org/10.15389/agrobiology.2017.1.13rus

    Article  Google Scholar 

  25. Dykman, L.A. and Shchyogolev, S.Y., The effect of gold and silver nanoparticles on plant growth and development, in Metal Nanoparticles: Properties, Synthesis and Applications, Saylor, Y. and Irby, V., Eds., Hauppauge: Nova Science, 2018, p. 263.

    Google Scholar 

  26. Alkilany, A.M. and Murphy, C.J., Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J. Nanopart. Res., 2010, vol. 12, p. 2313. https://doi.org/10.1007/s11051-010-9911-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khlebtsov, N.G. and Dykman, L.A., Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies, Chem. Soc. Rev., 2011, vol. 40, p. 1647. https://doi.org/10.1039/c0cs00018c

    Article  CAS  PubMed  Google Scholar 

  28. Khlebtsov, N.G., Optics and biophotonics of nanoparticles with a plasmon resonance, Quant. Electron., 2008, vol. 38, p. 504.

    Article  CAS  Google Scholar 

  29. Dykman, L.A., Bogatyrev, V.A., Shchegolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy: sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles: Synthesis, Properties, and Biomedical Use), Moscow: Nauka, 2008.

  30. Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B., 2003, vol. 107, p. 668. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  31. Falco, W.F., Botero, E.R., Falcão, E.A., Santiago, E.F., Bagnato, V.S., and Caires, A.R.L., In vivo observation of chlorophyll fluorescence quenching induced by gold nanoparticles, J. Photochem. Photobiol., A, 2011, vol. 225, p. 65. https://doi.org/10.1016/j.jphotochem.2011.09.027

    Article  CAS  Google Scholar 

  32. Torres, R., Diz, V., and Lagorio, M.G., Effects of gold nanoparticles on the photophysical and photosynthetic parameters of leaves and chloroplasts, Photochem. Photobiol. Sci., 2018, vol. 17, p. 505. https://doi.org/10.1039/C8PP00067K

    Article  CAS  PubMed  Google Scholar 

  33. Mezacasa, A.V., Queiroz, A.M., Graciano, D.E., Pontes, M.S., Santiago, E.F., Oliveira, I.P., Lopez, A.J., Casagrande, G.A., Scherer, M.D., dos Reis, D.D., Oliveira, S.L., and Caires, A.R.L., Effects of gold nanoparticles on photophysical behavior of chlorophyll and pheophytin, J. Photochem. Photobiol., A, 2020, vol. 389, art. ID 112252. https://doi.org/10.1016/j.jphotochem.2019.112252

    Article  CAS  Google Scholar 

  34. Li, X., Sun, H., Mao, X., Lao, Y., and Chen, F., Enhanced photosynthesis of carotenoids in microalgae driven by light-harvesting gold nanoparticles, ACS Sustainable Chem. Eng., 2020, vol. 8, p. 7600. https://doi.org/10.1021/acssuschemeng.0c00315

    Article  CAS  Google Scholar 

  35. Barazzouk, S., Bekalé, L., Kamat, P.V., and Hotchandani, S., Enhanced photostability of chlorophyll-a using gold nanoparticles as an efficient photoprotector, J. Mater. Chem., 2012, vol. 22, p. 25316. https://doi.org/10.1039/C2JM33681B

    Article  CAS  Google Scholar 

  36. Bogatyrev, V.A., Dykman, L. and Khlebtsov, N., Metody sinteza nanochastits s plazmonnym rezonansom (Synthesis of Nanoparticles with Plasmon Resonance), Saratov: Sarat. Gos. Univ. im. N.G. Chernyshevskogo, 2009.

  37. Dykman, L. and Khlebtsov, N., Gold Nanoparticles in Biomedical Applications, Boca Raton: CRC Press, 2017.

    Book  Google Scholar 

  38. Dykman, L. and Khlebtsov, N., Chemical synthesis of colloidal gold, Usp. Khim., 2019, vol. 88, p. 229. https://doi.org/10.1070/RCR4843

    Article  CAS  Google Scholar 

  39. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nat. Phys. Sci., 1973, vol. 241, p. 20.

    Article  CAS  Google Scholar 

  40. Mittal, A.K., Chisti, Y., and Banerjee, U.C., Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv., 2013, vol. 31, p. 346. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  41. Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E., and Kalinina, N.O., “Green” nanotechnologies: synthesis of metal nanoparticles using plants, Acta Nat., 2014, vol. 6, p. 35.

    Article  CAS  Google Scholar 

  42. Chumakov, D.S., Sokolov, A.O., Bogatyrev, V.A., Sokolov, O.I., Selivanov, N.Yu., and Dykman, L.A., Green synthesis of gold nanoparticles using Arabidopsis thaliana and Dunaliella salina cell cultures, Nanotechnol. Russ., 2018, vol. 13, p. 539.

    Article  CAS  Google Scholar 

  43. Beattie, I.R. and Haverkamp, R.G., Silver and gold nanoparticles in plants: sites for the reduction to metal, Metallomics, 2011, vol. 3, p. 628. https://doi.org/10.1039/c1mt00044f

    Article  CAS  PubMed  Google Scholar 

  44. Taylor, A.F., Rylott, E.L., Anderson, Ch.W.N., and Bruce, N.C., Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold, PLoS One, 2014, vol. 9, p. e93793. https://doi.org/10.1371/journal.pone.0093793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joshi, A., Nayyar, A., Dharamvir, K., and Verma, G., Detection of gold nanoparticles signal inside wheat (Triticum aestivum L.) and oats (Avena sativa) seedlings, AIP Conf. Proc., 2018, vol. 1953, p. 030058. https://doi.org/10.1063/1.5032393

    Article  CAS  Google Scholar 

  46. Liu, H., Zhang, X., Xu, Z., Wang, Y., Ke, Y., Jiang, Z., Yuan, Z., and Li, H., Role of polyphenols in plant-mediated synthesis of gold nanoparticles: identification of active components and their functional mechanism, Nanotechnology, 2020, vol. 31, p. 415601. https://doi.org/10.1088/1361-6528/ab9e25

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh, K., Satapathy, S.S., Ghosh, S., Jauhari, S., Kundu, C.N., and Si, S., Green chemistry approach for gold nanoparticles synthesis using plant extracts: a potential material towards catalysis and biology, Adv. Nat. Sci: Nanosci. Nanotechnol., 2020, vol. 11: 115. https://doi.org/10.1088/2043-6254/ab9f2b

    Article  CAS  Google Scholar 

  48. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., and Sarmah, A.K., Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination, Sci. Total Environ., 2016, vol. 573, p. 1089. https://doi.org/10.1016/j.scitotenv.2016.08.120

    Article  CAS  PubMed  Google Scholar 

  49. Gorelkin, P., Kalinina, N., Lav, A., Makarov, V., Tal’yanskii, M., and Yaminskii, I., Synthesis of nanoparticles using plants, Nanoindustriya, 2012, no. 7, p. 16.

  50. Shacklette, H.T., Lakin, H.W., Hubert, A.E., and Curtin, G.C., Absorption of Gold by Plants, Washington, DC: US Gov. Print. Off., 1970.

    Google Scholar 

  51. Chen, H., Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants, Chem. Spec. Bioavailability, 2018, vol. 30, p. 123. https://doi.org/10.1080/09542299.2018.1520050

    Article  CAS  Google Scholar 

  52. Khan, M.R., Adam, V., Rizvi, T.F., Zhang, B., Ahamad, F., Jośko, I., Zhu, Y., Yang, M., and Mao, C., Nanoparticle-plant interactions: two-way traffic, Small, 2019, vol. 15, p. e1901794. https://doi.org/10.1002/smll.201901794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Banerjee, K., Pramanik, P., Maity, A., Joshi, D.C., Wani, S.H., and Krishnan, P., Methods of using nanomaterials to plant systems and their delivery to plants (mode of entry, uptake, translocation, accumulation, biotransformation and barriers), in Advances in Phytonanotechnology: From Synthesis to Application, Ghorbanpour, M. and Wani, S.H., Eds., Cambridge: Academic, 2019, p. 123.

    Google Scholar 

  54. Lv, J., Christie, P., and Zhang, S., Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges, Environ. Sci.: Nano, 2019, vol. 6, p. 41. https://doi.org/10.1039/C8EN00645H

    Article  CAS  Google Scholar 

  55. Raliya, R., Franke, Ch., Chavalmane, S., Nair, R., Reed, N., and Pratim, B., Quantitative understanding of nanoparticle uptake in watermelon plants, Front. Plant Sci., 2016, vol. 7: 1288. https://doi.org/10.3389/fpls.2016.01288

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sabo-Attwood, T., Unrane, J.M., Stone, J.W., Murphy, C.J., Ghoshroy, S., Blom, D., Bertsch, P.M., and Newman, L.A., Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings, Nanotoxicology, 2012, vol. 6, p. 353. https://doi.org/10.3109/17435390.2011.579631

    Article  CAS  PubMed  Google Scholar 

  57. Wan, Y., Li, J., Ren, H., Huang, J., and Yuan, H., Physiological investigation of gold nanorods toward watermelon, J. Nanosci. Nanotechnol., 2014, vol. 14, p. 6089. https://doi.org/10.1166/jnn.2014.8853

    Article  CAS  PubMed  Google Scholar 

  58. Wang, P., Lombi, E., Zhao, F.-J., and Kopittke, P.M., Nanotechnology: a new opportunity in plant sciences, Trends Plant Sci., 2016, vol. 21, p. 699. https://doi.org/10.1016/j.tplants.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  59. Tripathi, D.K., Gaur, S., Singh, S., Singh, S., Pandey, R., Singh, V.P., Sharma, N.C., Prasad, S.M., Dubey, N.K., and Chauhan, D.K., An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity, Plant Physiol. Biochem., 2017, vol. 110, p. 2. https://doi.org/10.1016/j.plaphy.2016.07.030

    Article  CAS  PubMed  Google Scholar 

  60. Larue, C., Castillo-Michel, H., Sobanska, S., Cѐcillon, L., Bureau, S., Barthѐs, V., Ouerdane, L., Carriѐre, M., and Sarret, G., Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation, J. Hazard. Mater., 2014, vol. 264, p. 98. https://doi.org/10.1016/j.jhazmat.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  61. Parveen, A., Mazhari, B.B.Z., and Rao, S., Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum, Enzyme Microb. Technol., 2016, vol. 95, p. 107. https://doi.org/10.1016/j.enzmictec.2016.04.005

    Article  CAS  PubMed  Google Scholar 

  62. Onelli, E., Prescianotto-Baschong, C., Caccianiga, M., and Moscatelli, A., Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labeling with charged nanogold, J. Exp. Bot., 2008, vol. 59, p. 3051. https://doi.org/10.1093/jxb/ern154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, H., Ye, X., Guo, X., Geng, Zh., and Wang, G., Effects of surface ligands on the uptake and transport of gold nanoparticles in rice and tomato, J. Hazard. Mater., 2016, vol. 314, p. 188. https://doi.org/10.1016/j.jhazmat.2016.04.043

    Article  CAS  PubMed  Google Scholar 

  64. Moscatelli, A., Ciampolini, F., Rodighiero, S., Onelli, E., Cresti, M., Santo, N., and Idilli, A., Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold, J. Cell Sci., 2007, vol. 120, p. 3804. https://doi.org/10.1242/jcs.012138

    Article  CAS  PubMed  Google Scholar 

  65. Barrena, R., Casals, E., Colón, J., Font, X., Sánchez, A., and Puntes, V., Evaluation of the ecotoxicity of model nanoparticles, Chemosphere, 2009, vol. 75, p. 850. https://doi.org/10.1016/j.chemosphere.2009.01.078

    Article  CAS  PubMed  Google Scholar 

  66. Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P.K., and Zaidi, M.G.H., Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea, Plant Growth Regul., 2012, vol. 66, p. 303. https://doi.org/10.1007/s10725-011-9649-z

    Article  CAS  Google Scholar 

  67. Hawthorne, J., Musante, C., Sinha, S.K., and White, J.C., Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo, Int. J. Phytorem., 2012, vol. 14, p. 429. https://doi.org/10.1080/15226514.2011.620903

    Article  CAS  Google Scholar 

  68. Kumar, V., Guleria, P., Kumar, V., and Yadav, S.K., Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana, Sci. Total Environ., 2013, vols. 461–462, p. 462. https://doi.org/10.1016/j.scitotenv.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  69. Feichtmeier, N.S., Walther, P., and Leopold, K., Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles, Environ. Sci. Pollut. Res., 2015, vol. 22, p. 8549. https://doi.org/10.1007/s11356-014-4015-0

    Article  CAS  Google Scholar 

  70. Plotnikov, V.K., Salfetnikova, A.A., Golubev, A.A., and Dykman, L.A., Effect of gold nanoparticles on seed germination of winter barley, Nauchn. Zh. Kuban. Gos. Agrar. Univ., 2017, no. 127, p. 295. http://ej.kubagro.ru/2017/03/pdf/18.pdf.

  71. Ndeh, N.T., Maensiri, S., and Maensiri, D., The effect of green synthesized gold nanoparticles on rice germination and roots, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2017, vol. 8, art. ID 035008. https://doi.org/10.1088/2043-6254/aa724a

    Article  CAS  Google Scholar 

  72. Gopinath, K., Gowri, S., Karthika, V., and Arumugam, A., Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba, J. Nanostruct. Chem., 2014, vol. 4. https://doi.org/10.1007/s40097-014-0115-0

  73. Ma, X. and Quah, B., Effects of surface charge on the fate and phytotoxicity of gold nanoparticles to Phaseolus vulgaris, J. Food Chem. Nanotechnol., 2016, vol. 2, p. 57. https://doi.org/10.17756/jfcn.2016-011

    Article  Google Scholar 

  74. Zaka, M., Abbasi, B.H., Rahman, L.U., Shah, A., and Zia, M., Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa, IET Nanobiotechnol., 2016, vol. 10, p. 134. https://doi.org/10.1049/iet-nbt.2015.0039

    Article  PubMed  Google Scholar 

  75. Jadczak, P., Kulpa, D., Bihun, M., and Przewodowski, W., Positive effect of AgNPs and AuNPs in in vitro cultures of Lavandula angustifolia Mill., Plant Cell, Tissue Organ Cult., 2019, vol. 139, p. 191. https://doi.org/10.1007/s11240-019-01656-w

    Article  CAS  Google Scholar 

  76. Fincheira, P., Tortella, G., Duran, N., Seabra, A.B., and Rubilar, O., Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy, Crit. Rev. Biotechnol., 2020, vol. 40, p. 15. https://doi.org/10.1080/07388551.2019.1681931

    Article  CAS  PubMed  Google Scholar 

  77. Bodale, I., Teliban, G., Ursu, E., Stoleru, V., and Cazacu, A., The influence of gold nanoparticles on germination of carrot seeds, Proc. 19th Int. Multidisciplinary Sci. GeoConference, SGEM 2019, Sofia, 2019, vol. 19, p. 451. https://doi.org/10.5593/sgem2019/6.1/S24.059

  78. Tymoszuk, A. and Miler, N., Silver and gold nanoparticles impact on in vitro adventitious organogenesis in chrysanthemum, gerbera and Cape Primrose, Sci. Hortic. (Amsterdam), 2019, vol. 257, p. 108766. https://doi.org/10.1016/j.scienta.2019.108766

    Article  CAS  Google Scholar 

  79. Venzhik, Yu.V., Shchyogolev, S.Yu., and Dykman, L.A., Ultrastructural reorganization of chloroplasts during plant adaptation to abiotic stress factors, Russ. J. Plant Physiol., 2019, vol. 66, p. 850. https://doi.org/10.1134/S102144371906013X

    Article  CAS  Google Scholar 

  80. Hussain, M., Raja, N.I., Mashwani, Z.-U.-R., Iqbal, M., Sabir, S., and Yasmeen, F., In vitro seed germination and biochemical profiling of Artemisia absinthium exposed to various metallic nanoparticles, 3Biotechnology, 2017, vol. 7, p. 101. https://doi.org/10.1007/s13205-017-0741-6

  81. Milewska-Hendel, A., Witek, W., Rypień, A., Zubko, M., Baranski, R., Stróż, D., and Kurczyńska, E.U., The development of a hairless phenotype in barley roots treated with gold nanoparticles is accompanied by changes in the symplasmic communication, Sci. Rep., 2019, vol. 9, p. 4724. https://doi.org/10.1038/s41598-019-41164-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajeshwari, A., Suresh, S., Chandrasekaran, N., and Mukherjee, A., Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay, RSC Adv., 2016, vol. 6, p. 24000. https://doi.org/10.1039/c6ra04712b

    Article  CAS  Google Scholar 

  83. Debnath, P., Mondal, A., Hajra, A., Das, C., and Mondal, N.K., Cytogenetic effects of silver and gold nanoparticles on Allium cepa roots, J. Genet. Eng. Biotechnol., 2018, vol. 16, p. 519. https://doi.org/10.1016/j.jgeb.2018.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  84. Qian, H., Peng, X., Han, X., Ren, J., Sun, L., and Fu, Zh., Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana, J. Environ. Sci., 2013, vol. 25, p. 1947. https://doi.org/10.1016/S1001-0742(12)60301-5

    Article  CAS  Google Scholar 

  85. Gupta, S.D., Agarwal, A., and Pradhan, S., Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: an insight from antioxidative enzyme activities and gene expression patterns, Ecotoxicol. Environ. Saf., 2018, vol. 161, p. 624. https://doi.org/10.1016/j.ecoenv.2018.06.023

    Article  CAS  PubMed  Google Scholar 

  86. Hasanpour, H., Maali-Amiri, R., and Zeinali, H., Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea, Russ. J. Plant Physl., 2015, vol. 62, p. 779. https://doi.org/10.1134/S1021443715060096

    Article  CAS  Google Scholar 

  87. Mohammadi, R., Maali-Amiri, R., and Abbasi, A., Effect of TiO2 nanoparticles on chickpea response to cold stress, Biol. Trace Elem. Res., 2013, vol. 152, p. 403. https://doi.org/10.1007/s12011-013-9631-x

    Article  CAS  PubMed  Google Scholar 

  88. Mohammadi, R., Maali-Amiri, R., and Mantri, N., Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress, Russ. J. Plant Physiol., 2014, vol. 61, p. 768. https://doi.org/10.1134/S1021443714050124

    Article  CAS  Google Scholar 

  89. Jalil, S.U. and Ansari, M.I., Nanoparticles and abiotic stress tolerance in plants: synthesis, action, and signaling mechanisms, in Plant Signaling Molecules: Role and Regulation Under Stressful Environments, Khan, M.I.R., Reddy, P.S., Ferrante, A., and Khan, N.A., Eds., Amsterdam: Elsevier, 2019, p. 549.

    Google Scholar 

  90. Qi, M., Liu, Y., and Li, T., Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress, Biol. Trace Elem. Res., 2013, vol. 156, p. 323. https://doi.org/10.1007/s12011-013-9833-2

    Article  CAS  PubMed  Google Scholar 

  91. Haghighi, M., Abolghasemi, R., and Teixeira da Silva, J.A., Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment, Sci. Hortic. (Amsterdam), 2014, vol. 178, p. 231. https://doi.org/10.1016/j.scienta.2014.09.006

    Article  CAS  Google Scholar 

  92. Latef, A.A., Alhmad, M.F., and Abdelfattah, K.E., The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants, J. Plant Growth Regul., 2017, vol. 36, p. 60. https://doi.org/10.1007/s00344-016-9618-x

    Article  CAS  Google Scholar 

  93. Mohamed, A.K.S.H., Qayyum, M.F., Abdel-Hadi, Ah.M., Rehman, R.A., Ali, Sh., and Rizwan, M., Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat, Arch. Agron. Soil Sci., 2017, vol. 63, p. 1736. https://doi.org/10.1080/03650340.2017.1300256

    Article  CAS  Google Scholar 

  94. Almutairi, Z.M., Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination, Int. J. Agric. Biol., 2016, vol. 18, p. 449. https://doi.org/10.17957/IJAB/15.0114

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-04-00469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Venzhik.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by N. Balakshina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venzhik, Y.V., Moshkov, I.E. & Dykman, L.A. Gold Nanoparticles in Plant Physiology: Principal Effects and Prospects of Application. Russ J Plant Physiol 68, 401–412 (2021). https://doi.org/10.1134/S1021443721020205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721020205

Keywords:

Navigation