Skip to main content
Log in

Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Our objective was to evaluate the role of plant growth-promoting bacteria to protect maize (Zea mays L.) plants against salt damage. Bacillus aquimaris DY-3 based on their 16S rDNA sequences, the most tolerant to salinity and the synthesis of indole acetic acid was selected for further studies. Strain was inoculated on maize roots growing in sterilized sand under salt stress conditions (1% NaCl). After one week, plant growth was promoted by bacterial inoculation regardless of salt stress and non-salt stress. Chlorophyll content, leaf relative water content, accumulation of proline, soluble sugar and total phenolic compound, and activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase were enhanced, while lipid peroxidation levels and Na+ content were decreased. The results showed that B. aquimaris DY-3 alleviated the salt stress in maize, likely through the integration of the antioxidant enzymes and the non-antioxidant systems that improve the plant response. Hence, the application of indole acetic acid synthesizing plant growth-promoting bacteria may represent an important alternative approach to decrease the impact of salt stress on crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

Chl:

chlorophyll

IAA:

indole acetic acid

MDA:

malondialdehyde

PGPB:

plant growth-promoting bacteria

POD:

peroxidase

ROS:

reactive oxygen species

RWC:

relative water content

SOD:

superoxide dismutase

References

  1. Ramadoss, D., Lakkineni, V.K., Bose, P., Ali, S., and Annapurna, K., Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats, Springerplus, 2013, vol. 2, pp. 6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Deinlein, U., Stephan, A.B., Horie, T., Luo, W., Xu, G., and Schroeder, J.I., Plant salt-tolerance mechanisms, Trends Plant Sci., 2014, vol. 19, pp. 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paul, D. and Lade, H., Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review, Agron. Sustain. Dev., 2014, vol. 34, pp. 737–752.

    Article  Google Scholar 

  4. Rojas-Tapias, D., Pardo-Díaz, S., Obando, M., Rivera, D., and Bonilla, R., Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays), Appl. Soil Ecol., 2012, vol. 61, pp. 264–272.

    Article  Google Scholar 

  5. Fu, Q., Liu, C., Ding, N., Lin, Y., and Guo, B., Ameliorative effects of inoculation with the plant growthpromoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress, Agr. Water Manage., 2010, vol. 97, pp. 1994–2000.

    Article  Google Scholar 

  6. Ali, S., Charles, T.C., and Glick, B.R., Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase, Plant Physiol. Biochem., 2014, vol. 80, pp. 160–167.

    Article  CAS  PubMed  Google Scholar 

  7. Esitken, A., Yildiz, H.E., Ercisli, S., Donmez, M.F., Turan, M., and Gunes, A., Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry, Sci. Hortic.- Amsterdam, 2010, vol. 124, no. 1, pp. 62–66.

    CAS  Google Scholar 

  8. Mohamed, H.I. and Gomaa, E.Z., Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress, Photosynthetica, 2012, vol. 50, pp. 263–272.

    Article  CAS  Google Scholar 

  9. Glickmann, E. and Dessaux, Y., A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria, Appl. Environ. Microbiol., 1995, vol. 61, no. 2, pp. 793–796.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghahfarokhi, M.G., Mansurifar, S., Taghizadeh-Mehrjardi, R., Saeidi, M., Jamshidi, A.M., and Ghasemi, E., Effects of drought stress and rewatering on antioxidant systems and relative water content in different growth stages of maize (Zea mays L.) hybrids, Arch. Agron. Soil Sci., 2015, vol. 61, pp. 493–506.

    Article  Google Scholar 

  11. Karlidag, H., Yildirim, E., Turan, M., Pehluvan, M., and Donmez, F., Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria × ananassa), Hortscience, 2013, vol. 48, pp. 563–567.

    CAS  Google Scholar 

  12. Zhu, X., Song, F., and Xu, H., Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress, Mycorrhiza, 2010, vol. 20, pp. 325–332.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, G.X. and Asada, K., Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide, Plant Cell Physiol., 1992, vol. 33, pp. 117–123.

    CAS  Google Scholar 

  14. Hayat, R., Ali, S., Amara, U., Khalid, R., and Ahmed, I., Soil beneficial bacteria and their role in plant growth promotion: a review, Ann. Microbiol., 2010, vol. 60, no. 4, pp. 579–598.

    Article  Google Scholar 

  15. Jabborova, D., Egamberdieva, D., and Qodirova, D., Improvement of seedling establishment of soybean using IAA and IAA producing bacteria under saline conditions, J. Soil Water, 2013, vol. 2, pp. 531–538.

    Google Scholar 

  16. Yasar, F., Ellialtioglu, S., and Yildiz, K., Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean, Russ J. Plant Physiol., 2008, vol. 55, pp. 782–786.

    Article  CAS  Google Scholar 

  17. Tiwari, J.K., Munshi, A.D., Kumar, R., Pandey, R.N., Ajay, A., Bhat, J.S., and Sureja, A.K., Effect of salt stress on cucumber: Na+–K+ ratio, osmolyte concentration, phenols and chlorophyll content, Acta Physiol. Plant., 2009, vol. 32, pp. 103–114.

    Article  Google Scholar 

  18. Golpayegani, A. and Tilebeni, H.G., Effect of biological fertilizers on biochemical and physiological parameters of basil (Ocimum basilicum L.) medicine plant, Am.–Eur. J. Agric. Environ. Sci., 2011, vol. 11, pp. 411–416.

    CAS  Google Scholar 

  19. Santos, C.V., Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves, Sci. Hortic.-Amsterdam, 2004, vol. 103, pp. 93–99.

    Article  CAS  Google Scholar 

  20. Jha, Y. and Subramanian, R.B.S., Paddy physiology and enzymes level is regulated by rhizobacteria under saline stress, J. Appl. Bot. Food Qual., 2012, vol. 85, pp. 168–173.

    Google Scholar 

  21. Lugojan, C. and Ciulca, S., Evaluation of relative water content in winter wheat, J. Hortic. For. Biotechnol., 2011, vol. 15, pp. 173–177.

    Google Scholar 

  22. Parida, A.K. and Das, A.B., Salt tolerance and salinity effects on plants: a review, Ecotox. Environ. Safe., 2005, vol. 60, no. 3, pp. 324–329.

    Article  CAS  Google Scholar 

  23. Bohnert, H.J. and Sheveleva, E., Plant stress adaptations- making metabolism move, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 267–274.

    Article  CAS  PubMed  Google Scholar 

  24. Gandonou, C.B., Bada, F., Abrini, J., and Skali-Senhaji, N., Free proline, soluble sugars and soluble proteins concentration as affected by salt stress in two sugarcane (Saccharum sp.) cultivars differing in their salt tolerance, Int. J. Biol. Chem. Sci., 2011, vol. 5, pp. 2441–2453.

    Google Scholar 

  25. Verbruggen, N. and Hermans, C., Proline accumulation in plants: a review, Amino Acids, 2008, vol. 35, pp. 753–759.

    Article  CAS  PubMed  Google Scholar 

  26. Kubikova, E., Jennifer, L.M., Bonnie, H.O., Michael, D.M., and Augé, M.R., Mycorrhizal impact on osmotic adjustment in Ocimum basilicum L. during a lethal drying episode, J. Plant Physiol., 2001, vol. 158, pp. 1227–1230.

    Article  CAS  Google Scholar 

  27. Feng, G., Zhang, F., Li, X., Tian, C.Y., Tang, C., and Rengel, Z., Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots, Mycorrhiza, 2002, vol. 12, pp. 185–190.

    Article  CAS  PubMed  Google Scholar 

  28. Xia, L.J., Yang, L.Q., Sun, N.L., Li, J., Fang, Y.J., and Wang, Y.P., Physiological and antioxidant enzyme gene expression analysis reveals the improved tolerance to drought stress of the somatic hybrid offspring of Brassica napus and Sinapis alba at vegetative stage, Acta Physiol. Plant., 2016, vol. 38, pp. 1–10.

    Article  Google Scholar 

  29. Upadhyay, S.K., Singh, J.S., Saxena, A.K., and Singh, D.P., Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions, Plant Biol., 2011, vol. 14, pp. 605–611.

    Article  PubMed  Google Scholar 

  30. Tattini, M., Remorini, D., Pinelli, P., Agati, G., Saracini, E., Traversi, M.L., and Massai, R., Morphoanatomical, physiological and biochemical adjustments in response to root zone salinity stress and high solar radiation in two Mediterranean evergreen shrubs, Myrtus communis and Pistacia lentiscus, New Phytol., 2006, vol. 170, pp. 779–794.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Jiang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H.Q., Jiang, X.W. Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64, 235–241 (2017). https://doi.org/10.1134/S1021443717020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717020078

Keywords

Navigation