Skip to main content
Log in

Relative expression of genes of menthol biosynthesis pathway in peppermint (Mentha piperita L.) after chitosan, gibberellic acid and methyl jasmonate treatments

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Menthol as an important component of monoterpenes essential oil in peppermint (Mentha piperita L.) is widely applied for medical and industrial uses. In this study, the effect of exogenous applications of chitosan (200 mg/L), gibberellic acid (50 mg/L) and methyl jasmonate (300 μM) was investigated in the main genes of menthol biosynthesis pathways within a 72 h time period using qRT-PCR. Transcript levels of most genes were either unaffected or down-regulated following chitosan treatment relative to control plants. Decreasing of geranyl diphosphate synthase (GDS) and limonene synthase (LS) genes transcript in chitosan treatment could possibly be effective in reducing of limonene level. On the other hand, it seems that an increase in menthone-menthol reductase (MMR) transcription level at 72 h under these treatments had a positive role in increasing the amount of menthol in this plant. Since exogenous application of gibberellic acid (GA3) down-regulated transcript levels of several genes involved in menthol biosynthesis, there is this expectance that GA3 treatment might not have a prominent role in enhancing menthol yield via transcription regulation. Transcript level of the majority genes after methyl jasmonate treatment gradually increased and reached the highest level at 72 h, therefore, it is possible that methyl jasmonate improves medicinal properties of M. piperita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CHT:

chitosan

DMAPP:

dimethylallyl diphosphate

DXS:

1-deoxy-D-xylulose-5-phosphate synthase

FPP:

farnesyl diphosphate

GDS:

geranyl diphosphate synthase

GGPP:

geranyl geranyl diphosphate

GPP:

geranyl diphosphate

IDR:

isopiperitenone reductase

IPP:

isopentenyl diphosphate

L3H:

cytochrome P450 (2)-limonene-3-hydroxylase

LS:

limonene synthase

MeJA:

methyl jasmonate

MEP:

methyl erythritol phosphate

MFS:

menthofuran synthases

MMR:

menthone-menthol reductase

MNMR:

menthone-neomenthol reductase

MVA:

mevalonic acid

PR:

pulegone reductase

References

  1. Bauer, K., Conrad, R., and Seiler, W., CO-Production höherer Pflanzen an natürlichen Standorten, Z. Pflanzenphysiol., 1979, vol. 4, no. 3, pp. 219–230.

    Article  Google Scholar 

  2. Lange, B.M. and Ahkami, A., Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes–current status and future opportunities, Plant Biotech., 2013, vol. 1, pp. 169–196.

    Google Scholar 

  3. McConkey, M.E., Gershenzon, J., and Croteau, R.B., Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint, Plant Physiol., 2000, vol. 122, pp. 215–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Croteau, R.B., Davis, E.M., Ringer, K.L., and Wildung, M.R., Menthol biosynthesis and molecular genetics, Naturwissenschaften, 2005, vol. 92, pp. 562–577.

    Article  CAS  PubMed  Google Scholar 

  5. Eisenreich, W., Sagner, S., Zenk, M.H., and Bacher, A., Monoterpenoid essential oils are not of mevalonoid origin, Tetrahedron Lett., 1997, vol. 38, pp. 3889–3892.

    Article  CAS  Google Scholar 

  6. Lange, B.M., Wildung, M.R., Stauber, E.J., Sanchez, C., Pouchnik, D., and Croteau, R., Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 2934–2939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogura, T., Inoue, K., Tatsuta, T., Suzaki, T., Karata, K., Young, K., Su, L.H., Fierke, C.A., Jackman, J.E., Raetz, C.R.H., Coleman, J., Tomoyasu, T., and Matsuzawa, H., Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli, Mol. Microbiol., 1999, vol. 31, pp. 833–844.

    Article  CAS  PubMed  Google Scholar 

  8. Wise, M.L., and Croteau, R., Monoterpene biosynthesis, in Comprehensive Natural Products Chemistry: Isoprenoids Including Carotenoids and Steroids, Cane, D.E., Ed., Oxford: Elsevier, 1999, vol. 2, pp. 97–153.

    Article  CAS  Google Scholar 

  9. Mahmoud, S.S., Williams, M., and Croteau, R., Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil, Phytochemistry, 2004, vol. 65, pp. 547–554.

    Article  CAS  PubMed  Google Scholar 

  10. Dixon, R.A. and Paiva, N.L., Stress-induced phenylpropanoid metabolism, Plant Cell, 1995, vol. 7, no. 7, pp. 1085–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Fits, L. and Memelink, J., The jasmonateinducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element, Plant J., 2001, vol. 25, pp. 43–53.

    Article  PubMed  Google Scholar 

  12. Agrawal, G.K., Rakwal, R., Tamogami, S., Yonekura, M., Kubo, A., and Saji, H., Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings, Plant Physiol. Biochem., 2002, vol. 40, pp. 1061–1069.

    Article  CAS  Google Scholar 

  13. Deschamps, C. and Simon, J.E., Terpenoid essential oil metabolism in basil (Ocimum basilicum L.) following elicitation, J. Essent. Oil Res., 2006, vol. 18, pp. 618–621.

    Article  CAS  Google Scholar 

  14. Singh, P. and Mishra, A., Influence of gibberellins and ethereal on growth,chlorophyll content,protein,enzyme activities and essential monoterpene oil in efficient genotype Mentha spicata var. MSS-5, J. Med. Aromat. Plant Sci., 2001, vol. 22, pp. 283–286.

    Google Scholar 

  15. Olszewski, N., Sunand, T.P., and Gubler, F., Gibberellin signaling: biosynthesis, catabolism, and response pathways, Plant Cell, 2002, vol. 14, pp. 61–80.

    Google Scholar 

  16. Devoto, A. and Turner, J.G., Regulation of jasmonatemediated plant responses, Ann. Bot., 2003, vol. 92, pp. 329–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Menke, F.L., Champion, A., Kijne, J.W., and Memelink, J., A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2, EMBO J., 1999, vol. 18, pp. 4455–4463.

    Article  CAS  PubMed  Google Scholar 

  18. Pfaffl, M., A new mathematical model for relative quantification in real time RT-PCR, Nucleic Acids Res., 2001, vol. 29, no. 9, pp. 2002–2007.

    Article  Google Scholar 

  19. Estévez, J.M., Cantero, A., Reindl, A., Reichler, S., and León, P., 1-Deoxy-D-xylulose 5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants, J. Biol. Chem., 2001, vol. 276, no. 25, pp. 22901–22909.

    Article  PubMed  Google Scholar 

  20. Mahmoud, S.S. and Croteau, R.B., Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 8915–8920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mansouri, H., Asrar, Z., and Ryszard, A., The response of terpenoids to exogenous gibberellic acid in Cannabis sativa L. at vegetative stage, Acta Physiol. Plant., 2011, vol. 33, pp. 1085–1091.

    Article  CAS  Google Scholar 

  22. Bose, S.K., Kumar, B.R., Mishra, Y.S., Rajender, S., Sangwan, A.K., Singh, B., Mishra, A.K., Neelam, S., and Sangwan, S., Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis, Plant Physiol. Biochem., 2013, vol. 66, pp. 150–158.

    CAS  PubMed  Google Scholar 

  23. Ross, J.J., MacKenzie-Hose, A.K., Davies, P.J., Lester, D.R., Twitchin, B., and Reid, G.B., Further evidence for feedback regulation of gibberellin biosynthesis in pea, Physiol. Plant., 1999, vol. 105, pp. 532–538.

    Article  CAS  Google Scholar 

  24. Ma, D., Pu, G., Lei, C., Ma, L., Wang, H., Chen, Y.G., Du, Z., Wang, H., Li, G., Ye, H., and Liu, B., Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11- diene synthase gene, a key gene of artemisinin biosynthesis, Plant Cell Physiol., 2009, vol. 50, pp. 2146–2161.

    CAS  PubMed  Google Scholar 

  25. Yu, Z.X., Li, J.X., Yang, C.Q., Hu, W.L., Wang, L.J., and Chen, X.Y., The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L., Mol. Plant, 2012, vol. 5, pp. 353–365.

    Article  CAS  PubMed  Google Scholar 

  26. Pauwels, L., Morreel, K., Witte, E.D., Lammertyn, F., Montagu, M.V., Boerjan, W., Inzé, D., and Goossens, A., Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 4, pp. 1380–1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mahmoud, S.S. and Croteau, R.B., Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 24, pp. 14481–14486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rios-Estepa, R., Turner, G.W., Lee, J.M., Croteau, R.B., and Lange, B.M., A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 8, pp. 2818–2823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tissier, A., Trichome specific expression: promoters and their applications, in Transgenic Plants–Advances and Limitations, Çiftçi, Y.O., Ed., Rijeka: InTech, 2012, pp. 353–378.

    Google Scholar 

  30. Ishida, T., Kurata, T., Okada, K., and Wada, T., A genetic regulatory network in the development of trichomes and root hairs, Annu. Rev. Plant Biol., 2008, vol. 95, pp. 365–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Taheri.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleymani, F., Taheri, H. & Shafeinia, A.R. Relative expression of genes of menthol biosynthesis pathway in peppermint (Mentha piperita L.) after chitosan, gibberellic acid and methyl jasmonate treatments. Russ J Plant Physiol 64, 59–66 (2017). https://doi.org/10.1134/S1021443717010150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717010150

Keywords

Navigation