Skip to main content
Log in

Induction of secondary cell wall biosynthesis genes and their regulators by melatonin in Glycine max

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Plant lodging severely reduced crop yield and quality. Different plant growth regulators (PGRs) have been applied to improve lodging resistance through the regulation of physiological changes, especially on the increase of stem thickness and strength. Melatonin is a pleiotropic PGR for the regulation of plant growth and development. In this study, we demonstrated that the exogenous treatment of melatonin to Glycine max significantly enhanced plant lateral growth by increasing stem diameter. In addition to the stem thickness, secondary cell wall (SCW) deposition acts as another critical factor for stem rigidity for lodging resistance. To understand whether exogenous treatment of melatonin would regulate SCW biosynthesis genes, we performed transcriptomic analyses on the stems of Glycine max with or without melatonin treatment. Through the differentially-expressed-genes (DEGs) analyses, many SCW biosynthesis genes were found to be regulated by melatonin, including the cellulose, hemicellulose and lignin biosynthesis enzymes. We also found that the two known master regulators, NAC and MYB, of SCW biosynthesis genes were induced under melatonin treatment, which further supported our observation on the differential expression of SCW biosynthesis genes. Our study highlighted the improvement of lodging resistance by the exogenous treatment of melatonin through the increase of plant stem thickness and the regulation of SCW biosynthesis genes and their upstream TFs in Glycine max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abedon BG, Hatfield RD, Tracy WF (2006) Cell wall composition in juvenile and adult leaves of maize (Zea mays L.). J Agric Food Chem 54(11):3896–3900

    Article  CAS  PubMed  Google Scholar 

  • Altaf MA, Shahid R, Ren M-X, Khan LU, Altaf MM, Jahan MS, Nawaz MA, Naz S, Shahid S, Lal MK (2021) Protective mechanisms of melatonin against vanadium phytotoxicity in tomato seedlings: insights into nutritional status, photosynthesis, root architecture system, and antioxidant machinery. J Plant Growth Regul. https://doi.org/10.1007/s00344-021-10513-0

    Article  Google Scholar 

  • Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P (2022) Melatonin: first-line soldier in tomato under abiotic stress current and future perspective. Plant Physiol Biochem 185:188–197

    Article  CAS  PubMed  Google Scholar 

  • Altaf MA, Sharma N, Singh J, Samota MK, Sankhyan P, Singh B, Kumar A, Naz S, Lal MK, Tiwari RK (2023) Mechanistic insights on melatonin-mediated plant growth regulation and hormonal cross-talk process in solanaceous vegetables. Sci Hort 308:111570

    Article  CAS  Google Scholar 

  • Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga KS (2004) Cellulose synthesis in maize: isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose 11(3):287–299

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious‐and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42(2):147–152

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2014) Melatonin: plant growth regulator and/or biostimulator during stress? Trends Plant Sci 19(12):789–797

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J Pineal Res 59(2):133–150

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2017) Melatonin and its relationship to plant hormones. Ann Botany 121(2):195–207. https://doi.org/10.1093/aob/mcx114

    Article  CAS  Google Scholar 

  • Berry PM (2019) Lodging resistance in Cereals. In: Savin R, Slafer GA (eds) Crop Science. Springer, New York, pp 209–227. https://doi.org/10.1007/978-1-4939-8621-7_228

    Chapter  Google Scholar 

  • Berry P, Berry S (2015) Understanding the genetic control of lodging-associated plant characters in winter wheat (Triticum aestivum L.). Euphytica 205(3):671–689

    Article  Google Scholar 

  • Board J (2001) Reduced lodging for soybean in low plant population is related to light quality. Crop Sci 41(2):379–384. https://doi.org/10.2135/cropsci2001.412379x

    Article  Google Scholar 

  • Burritt EA, Bittner AS, Street JC, Anderson MJ (1985) Comparison of laboratory methods for the prediction of in vitro dry matter digestibility in three maturing grasses. J Agric Food Chem 33(4):725–728

    Article  CAS  Google Scholar 

  • Byeon Y, Park S, Kim YS, Park DH, Lee S, Back K (2012) Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. J Pineal Res 53(1):107–111

    Article  CAS  PubMed  Google Scholar 

  • Caierão E (2006) Effect of induced lodging on grain yield and quality of brewing barley. Crop Breed Appl Biotechnol 6:215–221

    Article  Google Scholar 

  • Caño-Delgado AI, Metzlaff K, Bevan MW (2000) The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127(15):3395–3405

    Article  PubMed  Google Scholar 

  • Chen Q, Qi W-b, Reiter RJ, Wei W, Wang B-m (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol 166(3):324–328. https://doi.org/10.1016/j.jplph.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easson D, White E, Pickles S (1993) The effects of weather, seed rate and cultivar on lodging and yield in winter wheat. J Agricultural Sci 121(2):145–156

    Article  Google Scholar 

  • Erland LA, Murch SJ, Reiter RJ, Saxena PK (2015) A new balancing act: the many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav 10(11):e1096469

    Article  PubMed  PubMed Central  Google Scholar 

  • Gitzendanner MA, Soltis PS, Yi T-S, Li D-Z, Soltis DE (2018) Ten-plastome phylogenetics: 30 years of inferences into plant evolution. In: Chaw S-M, Jansen RK (eds) Advances in botanical research, vol 85. Academic Press, Cambridge, pp 293–313. https://doi.org/10.1016/bs.abr.2017.11.016

    Chapter  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2011) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(D1):D1178–D1186. https://doi.org/10.1093/nar/gkr944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40(Database issue):D1178–1186. https://doi.org/10.1093/nar/gkr944

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Hu Y, Chen H, Yan P, Du Q, Wang Y, Wang H, Wang Z, Kang D, Li W-X (2021) Identification of traits and genes associated with lodging resistance in maize. Crop J 9(6):1408–1417. https://doi.org/10.1016/j.cj.2021.01.002

    Article  Google Scholar 

  • Hao Z, Avci U, Tan L, Zhu X, Glushka J, Pattathil S, Eberhard S, Sholes T, Rothstein GE, Lukowitz W (2014) Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Front Plant Sci 5:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández IG, Gomez FJV, Cerutti S, Arana MV, Silva MF (2015) Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiol Biochem 94:191–196

    Article  PubMed  Google Scholar 

  • Hussain S, Liu T, Iqbal N, Brestic M, Pang T, Mumtaz M, Shafiq I, Li S, Wang L, Gao Y, Khan A, Ahmad I, Allakhverdiev SI, Liu W, Yang W (2020) Effects of lignin, cellulose, hemicellulose, sucrose and monosaccharide carbohydrates on soybean physical stem strength and yield in intercropping. Photochem Photobiol Sci 19(4):462–472. https://doi.org/10.1039/c9pp00369j

    Article  CAS  PubMed  Google Scholar 

  • Jedel P, Helm J (1991) Lodging effects on a semidwarf and two standard barley cultivars. Agron J 83(1):158–161

    Article  Google Scholar 

  • Kashiwagi T, Togawa E, Hirotsu N, Ishimaru K (2008) Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.). Theor Appl Genet 117(5):749–757

    Article  PubMed  Google Scholar 

  • Lee HY, Byeon Y, Tan D-X, Reiter RJ, Back K (2015) Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J Pineal Res 58(3):291–299. https://doi.org/10.1111/jpi.12214

    Article  CAS  PubMed  Google Scholar 

  • Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and Poplar. New Phytol 188(3):774–786

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Wang S, Liu Y, Zhang Y, Ren M, Liu L, Lu T, Wei H, Wei Z (2019) Overexpression of PsnSuSy1, 2 genes enhances secondary cell wall thickening, vegetative growth, and mechanical strength in transgenic tobacco. Plant Mol Biol 100(3):215–230

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-C, Li W, Sun Y-H, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25(11):4324–4341. https://doi.org/10.1105/tpc.113.117697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-CJ, Chen H, Li Q, Li W, Wang JP, Shi R, Tunlaya-Anukit S, Shuai P, Wang Z, Ma H, Li H, Sun Y-H, Sederoff RR, Chiang VL (2017) Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. Proc Nation Acad Sci. https://doi.org/10.1073/pnas.1714422114

    Article  Google Scholar 

  • Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, Yang C, Yuan X, Yang W (2016) Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr]. Field Crops Res 196:261–267. https://doi.org/10.1016/j.fcr.2016.07.008

    Article  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manga-Robles A, Santiago R, Malvar RA, Moreno-González V, Fornalé S, López I, Centeno ML, Acebes JL, Álvarez JM, Caparros-Ruiz D, Encina A, García-Angulo P (2021) Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. Plant Sci 307:110882. https://doi.org/10.1016/j.plantsci.2021.110882

    Article  CAS  PubMed  Google Scholar 

  • Murch S, KrishnaRaj S, Saxena P (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. Cv. anthos) plants. Plant Cell Rep 19:698–704

    Article  CAS  PubMed  Google Scholar 

  • Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, Niu M, Hameed S (2016) Melatonin: current status and future perspectives in plant science. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01230

    Article  PubMed  PubMed Central  Google Scholar 

  • Norman AG (2012) Soybean physiology, agronomy, and utilization. Elsevier, Amsterdam

    Google Scholar 

  • Pendleton J (1954) The effect of lodging on spring oat yields and test weight 1. Agron J 46(6):265–267

    Article  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19(1):237–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna A, Giridhar P, Jobin M, Paulose C, Ravishankar G (2012) Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult (PCTOC) 108(2):267–278

    Article  CAS  Google Scholar 

  • Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012a) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium× Prunus cerasus). Plant Physiol Biochem 61:162–168

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou VN, Therios IN, Dimassi-Theriou KN (2012b) Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB‐6P (Prunus cerasus L.), Gisela 6 (P. cerasus× P. Canescens), and MxM 60 (P. avium× P. Mahaleb). J Pineal Res 52(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Sekhon RS, Joyner CN, Ackerman AJ, McMahan CS, Cook DD, Robertson DJ (2020) Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments. Field Crops Res 249:107737. https://doi.org/10.1016/j.fcr.2020.107737

    Article  Google Scholar 

  • Sisler W, Olson P (1951) A study of methods of influencing lodging in barley and the effect of lodging upon yield and certain quality characteristics. Sci Agric 31(5):177–186

    Google Scholar 

  • Stanca A, Jenkins G, Hanson P (1979) Varietal responses in spring barley to natural and artificial lodging and to a growth regulator. J Agricultural Sci 93(2):449–457

    Article  Google Scholar 

  • Suanum W, Somta P, Kongjaimun A, Yimram T, Kaga A, Tomooka N, Takahashi Y, Srinives P (2016) Co-localization of QTLs for pod fiber content and pod shattering in F2 and backcross populations between yardlong bean and wild cowpea. Mol Breeding 36(6):1–11

    Article  CAS  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133(1):73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari RK, Lal MK, Kumar R, Mangal V, Altaf MA, Sharma S, Singh B, Kumar M (2021)  Insight into melatonin-mediated response and signaling in the regulation of plant defense under biotic stress. Plant Mol Biol. https://doi.org/10.1007/s11103-021-01202-3

    Article  PubMed  Google Scholar 

  • Tiwari RK, Kumar R, Lal MK, Kumar A, Altaf MA, Devi R, Mangal V, Naz S, Altaf MM, Dey A (2023) Melatonin-polyamine interplay in the regulation of stress responses in plants. J Plant Growth Regul 42(8):4834–4850

    Article  CAS  Google Scholar 

  • Tsai NC, Hsu TS, Kuo SC, Kao CT, Hung TH, Lin DG, Yeh CS, Chu CC, Lin JS, Lin HH, Ko CY, Chang TH, Su JC, Lin YJ (2021) Large-scale data analysis for robotic yeast one-hybrid platforms and multi-disciplinary studies using GateMultiplex. BMC Biol 19(1):214. https://doi.org/10.1186/s12915-021-01140-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Avci U, Nakashima J, Hahn MG, Chen F, Dixon RA (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Nation Acad Sci 107(51):22338–22343. https://doi.org/10.1073/pnas.1016436107

    Article  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate–glutathione cycle. J Pineal Res 53(1):11–20

    Article  PubMed  Google Scholar 

  • Wang P, Sun X, Chang C, Feng F, Liang D, Cheng L, Ma F (2013a) Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J Pineal Res 55(4):424–434

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2013b) Long-term exogenous application of melatonin delays drought‐induced leaf senescence in apple. J Pineal Res 54(3):292–302

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ren C, Cao L, Jin X, Wang M, Zhang M, Zhao Q, Li H, Zhang Y, Yu G (2021a) The mechanisms underlying melatonin improved soybean seedling growth at different nitrogen levels. Funct Plant Biol 48(12):1225–1240

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li F, Chen Z, Yang B, Komatsu S, Zhou S (2021b) Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress. J Proteom 232:104064

    Article  CAS  Google Scholar 

  • Wei W, Li Q-T, Chu Y-N, Reiter RJ, Yu X-M, Zhu D-H, Zhang W-K, Ma B, Lin Q, Zhang J-S (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66(3):695–707

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Boulton MI, Barber TE, Greenland AJ, Powell W (2013) Genotype analysis of the wheat semidwarf R ht-B 1b and R ht‐D 1b ancestral lineage. Plant Breeding 132(6):539–545

    Article  CAS  Google Scholar 

  • Yang L, Zhao X, Ran L, Li C, Fan D, Luo K (2017) PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep 7(1):1–14

    Google Scholar 

  • Yeh C-S, Wang Z, Miao F, Ma H, Kao C-T, Hsu T-S, Yu J-H, Hung E-T, Lin C-C, Kuan C-Y, Tsai N-C, Zhou C, Qu G-Z, Jiang J, Liu G, Wang JP, Li W, Chiang VL, Chang T-H, Lin Y-CJ (2019) A novel synthetic-genetic-array-based yeast one-hybrid system for high discovery rate and short processing time. Genome Res 29(8):1343–1351. https://doi.org/10.1101/gr.245951.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y, Ma F (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54(4):426–434. https://doi.org/10.1111/jpi.12038

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16(4):227–233. https://doi.org/10.1016/j.tplants.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Luan Y, Shi W, Tang Y, Huang X, Tao J (2022) Melatonin enhances stem strength by increasing the lignin content and secondary cell wall thickness in herbaceous peony. J Exp Bot. https://doi.org/10.1093/jxb/erac165

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Ye Z-H (2012) MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant Cell Physiol 53(2):368–380

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Yang S, Lu M, Zhao S, Cai L, Zhang Y, Zhao R, Lv J (2020) Structure and monomer ratio of lignin in C3H and HCT RNAi transgenic poplar saplings. ChemistrySelect 5(24):7164–7169

    Article  CAS  Google Scholar 

  • Zou J, Yu H, Yu Q, Jin X, Cao L, Wang M, Wang M, Ren C, Zhang Y (2021) Physiological and UPLC-MS/MS widely targeted metabolites mechanisms of alleviation of drought stress-induced soybean growth inhibition by melatonin. Ind Crops Prod 163:113323

    Article  CAS  Google Scholar 

Download references

Funding

This work has received research support from CH Biotech R&D Co., LTD., in Taiwan, Nantou.

Author information

Authors and Affiliations

Authors

Contributions

Ying-Chung Jimmy Lin, Kai Xia, Cho-Chun Huang, Gui-Jun Li and Chung-Ting Kao contributed to the experimental design. The plant material preparation and melatonin treatment were performed by Ya-Wen Huang. The RNA extraction and cDNA library construction were performed by Chung-Ting Kao and Jhong-He Yu. DEGs analysis was performed by Chung-Ting Kao, Chang-Hung Chen and Shang-Che Kuo. qPCR was performed by Jia-Cheng Lin. The manuscript was written by Ying-Chung Jimmy Lin, Kai Xia, Ying-Lan Chen, Chung-Ting Kao and Tsai Pin Chou. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kai Xia or Ying-Chung Jimmy Lin.

Ethics declarations

Conflict of interest

To the best of our knowledge, the authors declare no relevant conflicts of interest. All co-authors have reviewed and approved the contents of the manuscript. We certify that the submission represents original work and is not currently being reviewed by any other publication.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, CT., Huang, YW., Lin, JC. et al. Induction of secondary cell wall biosynthesis genes and their regulators by melatonin in Glycine max. Plant Growth Regul (2024). https://doi.org/10.1007/s10725-024-01140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10725-024-01140-2

Keywords

Navigation