Skip to main content
Log in

Proteomic analysis of isozymes in Butea superba leaves

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The proliferation of protein abundances under influence of seasonal changes are involved in cellular plant metabolic pathways. The protein profiles in relevant with seasonal variations in Butea superba leaves collected in winter, summer and rainy season were evaluated by two-dimensional polyacrylamide gel electrophoresis coupled with a nanoflow liquid chromatography coupled to electrospray ionization quadrupoletime- of-flight tandem mass spectrometry. The 84 proliferated protein spots were sum up of total proteins, which were found in 3 season-collected plant leaves and were classified into 11 functional groups. Eight proteins which exhibited the alteration of abundant levels in different seasons were found involved in carbohydrate and energy metabolism, photosynthesis, secondary metabolism, stress, RNA metabolism, ROS scavenging and detoxifying, and protein destination and storage. There were 2 proteins exhibited obviously isozyme polypeptide sequences. The variable physiological status within the plant leaf might be influenced by the quantitative and qualitative proliferated protein presences with response to seasonal changes and thus allowing plant to survive during severe abiotic stresses during seasonal changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2-DE:

two-dimensional polyacrylamide gel electrophoresis

ACN:

acetonitrile

CHAPS:

3-[(3-Cholamidopropyl) dimethylammonio]-1-propanesulfonate

Vh:

volthours

MDHAR:

monodehydroascorbate peroxidase reductase

References

  1. Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., and Thongnoi, W., Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies, J. Ethnopharmacol., 2003, vol. 89, pp. 261–264.

    Article  PubMed  Google Scholar 

  2. Cherdshewasart, W., Cheewasopit, W., and Picha, P., The differential anti-proliferation effect of white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of MCF-7 cells, J. Ethnopharmacol., 2004, vol. 93, pp. 255–260.

    CAS  PubMed  Google Scholar 

  3. Roengsumran, S., Petsom, A., Ngamrojanavanich, N., Rugsilp, T., Sittiwicheanwong, P., Khorphueng, P., Cherdshewasart, W., and Chaichantipyuth, C., Flavonoid and flavonoid glycoside from Butea superba Roxb. and their cAMP phosphodiesterase inhibitory activity, J. Sci. Res. Chula. Univ., 2000, vol. 25, pp. 169–176.

    CAS  Google Scholar 

  4. Ngamrojanavanich, N., Loontaisong, A., Pengpreecha, S., Cherdshewasart, W., Pornpakakul, S., Pudhom, K., Roengsumran, S., and Petsom, A., Cytotoxic constituents from Butea superba Roxb., J. Ethnopharmacol., 2007, vol. 109, pp. 354–358.

    Article  CAS  PubMed  Google Scholar 

  5. Porter, J.R. and Semenov, M.A., Crop responses to climatic variation, Philos. Trans. R. Soc., B., 2005, vol. 360, pp. 2021–2035.

    Article  Google Scholar 

  6. Mitprasat, M., Roytrakul, S., Jiemsup, S., Boonseng, O., and Yokthongwattana, K., Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation, Planta, 2011, vol. 233, pp. 1209–1221.

    CAS  PubMed  Google Scholar 

  7. Donnelly, B.E., Madden, R.D., Ayoubi, P., Porter, D.R., and Dillwith, J.W., The wheat (Triticum aestivum L.) leaf proteome, Proteomics, 2005, vol. 5, pp. 1624–1633.

    Article  CAS  PubMed  Google Scholar 

  8. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  9. Srisomsap, C., Sawangareetrakul, P., Subhasitanont, P., Chokchaichamnankit, D., Chiablaem, K., Bhudhisawasdi, V., Wongkham, S., and Svasti, J., Proteomic studies of cholangiocarcinoma and hepatocellular carcinoma cell secretomes, J. Biomed. Biotechnol., 2010, vol. 2010, p. 437143. doi 10.1155/2010/437143

    Article  PubMed  Google Scholar 

  10. Boonmee, A., Srisomsap, C., Chokchaichamnankit, D., Karnchanatat, A., and Sangvanich, P., A proteomic analysis of Curcuma comosa Roxb. rhizomes, Proteome Sci., 2011, vol. 9, p. 43. doi 10.1186/1477-5956-9-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Q., Huang, J., Liu, S., Li, J., Yang, X., Liu, Y., and Liu, Z., Proteomic analysis of young leaves at three developmental stages in an albino tea cultivar, Proteome Sci., 2011, vol. 9, p. 44. doi 10.1186/1477-5956-9-44

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rasineni, G.K., Chinnaboina, M., and Reddy, A.R., Proteomic approach to study leaf proteins in a fastgrowing tree species, Gmelina arborea Linn. Roxb., Trees, 2009, vol. 24, pp. 129–138.

    Google Scholar 

  13. Zhang, Y., Xu, L., Zhu, X., Gong, Y., Xiang, F., Sun, X., and Liu, L., Proteomic analysis of heat stress response in leaves of radish (Raphanus sativus L.), Plant Mol. Biol. Rep., 2012, vol. 31, pp. 195–203.

    Article  Google Scholar 

  14. Janmohammadi, M., Zolla, L., and Rinalducci, S., Low temperature tolerance in plants: changes at the protein level, Phytochemistry, 2015, vol. 117, pp. 76–89.

    Article  CAS  PubMed  Google Scholar 

  15. Ma, R., Sun, L., Chen, X., Jiang, R., Sun, H., and Zhao, D., Proteomic changes in different growth periods of ginseng roots, Plant Physiol. Biochem., 2013, vol. 67, pp. 20–33.

    Article  CAS  PubMed  Google Scholar 

  16. Veitch, N.C., Isoflavonoids of the Leguminosae, Nat. Prod. Rep., 2013, vol. 30, pp. 988–1027.

    Article  CAS  PubMed  Google Scholar 

  17. Grimplet, J., Wheatley, M.D., Jouira, H.B., Deluc, L.G., Cramer, G.R., and Cushman, J.C., Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions, Proteomics, 2009, vol. 9, pp. 2503–2528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Komatsu, S. and Hossain, Z., Organ-specific proteome analysis for identification of abiotic stress response mechanism in crop, Front. Plant Sci., 2013, vol. 4, p. 71. doi 10.3389/fpls.2013.00071

    PubMed  PubMed Central  Google Scholar 

  19. Cherdshewasart, W. and Sutjit, W., Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers, Phytomedicine, 2008, vol. 15, no. 1–2, pp. 38–43.

    Article  CAS  PubMed  Google Scholar 

  20. Lu, P., Sang, W.G., and Ma, K.P., Differential responses of the activities of antioxidant enzymes to thermal stresses between two invasive Eupatorium species in China, J. Integr. Plant Biol., 2008, vol. 50, no. 4, pp. 393–401.

    Article  CAS  PubMed  Google Scholar 

  21. Ciuzan, O., Lazar, S.L., Lung, M.L., Pop, O.L., and Pamfil, D., Involvement of the glycine-rich RNAbinding proteins (GRP) in osmotic stress response during seed germination: a comparison between GRP 2 and GRP 7, Med. Cluj-Napoca Hortic., 2015, vol. 72, pp. 61–67.

    Google Scholar 

  22. Kim, J.Y., Kim, W.Y., Kwak, K.J., Oh, S.H., Han, Y.S., and Kang, H., Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process, J. Exp. Bot., 2010, vol. 61, pp. 2317–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, Z., Hong, Q., Xue, P., Paul, G., Feng, Z., Wang, L., Mei, Y., Wu, L., Chen, X., and Wu, D., A proteome-wide screen identifies valosin-containing protein as an essential regulator of podocyte endoplasmic reticulum stress, Chin. Sci. Bull., 2012, vol. 57, pp. 2493–2505.

    Article  CAS  Google Scholar 

  24. Genschik, P., Jamet, E., Philipps, G., Parmentier, Y., Gigot, C., and Fleck, J., Molecular characterization of a ß-type proteasome subunit from Arabidopsis thaliana co-expressed at a high level with an a-type proteasome subunit early in the cell cycle, Plant J., 1994, vol. 6, pp. 537–546.

    Article  CAS  PubMed  Google Scholar 

  25. de Oliveira, A.B., Alencar, N.L.M., and Gomes-Filho, E., Comparison between the water and salt stress effects on plant growth and development, in Responses of Organisms to Water Stress, Akinci, S., Ed., Rijeka: InTech, 2013, pp. 67–94.

    Google Scholar 

  26. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sangvanich.

Additional information

The article is published in the original.

Electronic supplementary material: The online version of this article contains supplementary material, which is available to authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leelahawong, C., Srisomsap, C., Cherdshewasart, W. et al. Proteomic analysis of isozymes in Butea superba leaves. Russ J Plant Physiol 64, 100–108 (2017). https://doi.org/10.1134/S1021443717010101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717010101

Keywords

Navigation