Skip to main content
Log in

Cell type specificity of plant hormonal signals: Case studies and reflections on ethylene

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In the light of increasing evidence that plant growth and development depend on signals perceived in distinct cell types where hormonal inputs are transformed into orchestrated responses triggering a plethora of physiological processes, we reflect on the case of ethylene signaling. Experimental approaches to address cell type-specificity of the ethylene response are discussed and future challenges in ethylene signaling studies are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

AUX1:

Auxin Resistant 1

BR:

brassinosteroid

BRI:

Brassinosteroid Insensitive

Col-0:

Columbia-0 ecotype

EBF:

EIN3 binding factor

EDZ:

elongation/differentiation zone

EIN:

Ethylene Insensitive

CTR1:

Constitutive Triple Response 1

EIL1:

Ethylene Insensitive Like 1

EZ:

elongation zone

GA:

gibberellic acid

GAL4:

Galactose-induced 4

GFP:

green fluorescent protein

LRC:

lateral root cap

NASC:

The Nottingham Arabidopsis Stock Centre

PIN2:

Pin-Formed 2

QC:

quiescent centre

RAM:

root apical meristem

TF:

transcription factor

TZ:

transition zone

UAS:

upstream activation sequence

References

  1. Ubeda-Tomás, S., Beemster, G.T., and Bennett, M.J., Hormonal regulation of root growth: integrating local activities into global behavior, Trends Plant Sci., 2012, vol. 17, pp. 326–331.

    Article  PubMed  Google Scholar 

  2. Ubeda-Tomás, S., Swarup, R., Coates, J., Swarup, K., Laplaze, L., Beemster, G.T., Hedden, P., Bhalerao, R., and Bennett, M.J., Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis, Nat. Cell Biol., 2008, vol. 10, pp. 625–628.

    Article  PubMed  Google Scholar 

  3. Ubeda-Tomás, S., Federici, F., Casimiro, I., Beemster, G.T.S., Bhalerao, R., Swarup, R., Doerner, P., Haseloff, J., and Bennett, M.J., Gibberellin signaling in the endodermis controls Arabidopsis root meristem size, Curr. Biol., 2009, vol. 19, pp. 1194–1199.

    Article  PubMed  Google Scholar 

  4. Swarup, R., Kramer, E.M., Perry, P., Knox, K., Leyser, H.M.O., Haseloff, J., Beemster, G.T.S., Bhalerao, R., and Bennett, M.J., Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal, Nat. Cell Biol., 2005, vol. 7, pp. 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  5. Savaldi-Goldstein, S., Peto, C., and Chory, J., The epidermis both drives and restricts plant shoot growth, Nature, 2007, vol. 446, pp. 199–202.

    Article  CAS  PubMed  Google Scholar 

  6. Hacham, Y., Holland, N., Butterfield, C., Ubeda-Tomás, S., Bennett, M.J., Chory, J., and Savaldi-Goldstein, S., Brassinosteroid perception in the epidermis controls root meristem size, Development, 2011, vol. 138, pp. 839–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dello, Ioio, R., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P., and Sabatini, S., Cytokinins determine Arabidopsis rootmeristem size by controlling cell differentiation, Curr. Biol., 2007, vol. 17, pp. 678–682.

    Article  CAS  PubMed  Google Scholar 

  8. Haseloff, J., GFP variants for multispectral imaging of living cells, Methods Cell Biol., 1999, vol. 58, pp. 139–151.

    Article  CAS  PubMed  Google Scholar 

  9. Birnbaum, K., Shasha, D.E., Wang, J.Y., Jung, J.W., Lambert, G.M., Galbraith, D.W., and Benfey, P.N., A gene expression map of the Arabidopsis root, Science, 2003, vol. 302, no. 5652 pp. 1956–1960.

    Article  CAS  PubMed  Google Scholar 

  10. Lee, J.Y., Colinas, J., Wang, J.Y., Mace, D., Ohler, U., and Benfey, P.N., Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 6055–6060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vragović, K., Sela, A., Friedlander-Shani, L., Fridman, Y., Hacham, Y., Holland, N., Bartom, E., Mockler, T.C., and Savaldi-Goldstein, S., Translatome analyses capture of opposing tissue-specific brassinosteroid signals orchestrating root meristem differentiation, Proc. Natl. Acad. Sci. USA, 2015, vol. 112, pp. 923–928.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dugardeyn, J. and Van Der Straeten, D., Ethylene: fine tuning plant growth and development by stimulation and inhibition of elongation, Plant Sci., 2008, vol. 175, pp. 59–70.

    Article  CAS  Google Scholar 

  13. Vandenbussche, F. and Van Der Straeten, D., The role of ethylene in plant growth and development, in Annual Plant Reviews, McManus, M., Ed., New York: Wiley, 2012, vol. 44, pp. 219–241.

    CAS  Google Scholar 

  14. Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., and Ecker, J.R., CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases, Cell, 1993, vol. 72, pp. 427–441.

    Article  CAS  PubMed  Google Scholar 

  15. Guo, H. and Ecker, J.R., Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor, Cell, 2003, vol. 115, pp. 667–677.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y.F., Randlett, M.D., Findell, J.L., and Schaller, G.E., Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis, J. Biol. Chem., 2002, vol. 277, pp. 19861–19866.

    Article  CAS  PubMed  Google Scholar 

  17. Ma, B., Cui, M.L., Sun, H.J., Takada, K., Mori, H., Kamada, H., and Ezura, H., Subcellular localization and membrane topology of the melon ethylene receptor CmERS1, Plant Physiol., 2006, vol. 141, pp. 587–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong, C.H., Jang, M., Scharein, B., Malach, A., Rivarola, M., Liesch, J., Groth, G., Hwang, I., and Chang, C., Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1, J. Biol. Chem., 2010, vol. 285, pp. 40706–40713.

    Article  CAS  PubMed  Google Scholar 

  19. Gao, Z., Chen, Y.F., Randlett, M.D., Zhao, X.C., Findell, J.L., Kieber, J.J., and Schaller, G.E., Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complex, J. Biol. Chem., 2003, vol. 278, pp. 34725–34732.

    Article  CAS  PubMed  Google Scholar 

  20. Bisson, M.M., Bleckmann, A., Allekotte, S., and Groth, G., EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1, Biochem. J., 2009, vol. 424, pp. 1–6.

  21. Wilkinson, J.Q., Lanahan, M.B., Clark, D.G., Bleecker, A.B., Chang, C., Meyerowitz, E.M., and Klee, H.J., A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants, Nat. Biotech., 1997, vol. 15, pp. 444–447.

    Article  CAS  Google Scholar 

  22. Vandenbussche, F., Vaseva, I., Vissenberg, K., and Van Der Straeten, D., Ethylene in vegetative development: a tale with a riddle, New Phytol., 2012, vol. 194, pp. 895–909.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao, Q. and Guo, H., Paradigms and paradox in the ethylene signaling pathway and interaction network, Mol. Plant, 2011, vol. 4, pp. 626–634.

    Article  CAS  PubMed  Google Scholar 

  24. Qiao, H., Chang, K.N., Yazaki, J., and Ecker, J.R., Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis, Genes Dev., 2009, vol. 23, pp. 512–521.

    CAS  PubMed  Google Scholar 

  25. Qiao, H., Shen, Z., Huang, S.C., Schmitz, R.J., Urich, M.A., Briggs, S.P., and Ecker, J.R., Processing subcellular trafficking of ER-tethered EIN2 control response to ethylene gas, Science, 2012, vol. 338, pp. 390–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. An, F., Zhao, Q., Ji, Y., Li, W., Jiang, Z., Yu, X., Zhang, C., Han, Y., He, W., Liu, Y., Zhang, S., Ecker, J., and Guo, H., Ethylene induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis, Plant Cell, 2010, vol. 22, pp. 2384–2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K.R., Enriquez, P., Binder, B.M., Heber, S., Stepanova, A.N., and Alonso, J.M., Gene-specific translation regulation mediated by the hormone-signaling molecule EIN2, Cell, 2015, vol. 163, pp. 684–697.

    Article  CAS  PubMed  Google Scholar 

  28. Li, W., Ma, M., Feng, Y., Li, H., Wang, Y., Ma, Y., Li,M., An, F., and Guo, H., EIN2-directed translational regulation of ethylene signaling in Arabidopsis, Cell, 2015, vol. 163, pp. 670–683.

    Article  CAS  PubMed  Google Scholar 

  29. Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T., Sandberg, G., Bhalerao, R., Ljung, K., and Bennett, M.J., Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation, Plant Cell, 2007, vol. 19, pp. 2186–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dello Ioio, R., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M.T., Aoyama, T., Costantino, P., and Sabatini, S., A genetic framework for the control of cell division and differentiation in the root meristem, Science, 2008, vol. 322, pp. 1380–1384.

    Article  CAS  PubMed  Google Scholar 

  31. Chandler, J.W. and Werr, W., Cytokinin-auxin crosstalk in cell type specification, Trends Plant Sci., 2015, vol. 20, pp. 291–300.

    Article  CAS  PubMed  Google Scholar 

  32. Chaiwanon, J. and Wang, Z.Y., Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots, Curr. Biol., 2015, vol. 25, pp. 1031–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neljubov, D., Über die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen, Beih. Bot. Centralbl., 1901, vol. 10, pp. 128–138.

    Google Scholar 

  34. Johnson, P.R. and Ecker, J.R., The ethylene gas signal transduction pathway: a molecular perspective, Annu. Rev. Genet., 1998, vol. 32, pp. 227–254.

    Article  CAS  PubMed  Google Scholar 

  35. Bleecker, A., Esch, J., Hal, A.E., Rodríguez, F.I., and Binder, B.M., The ethylene-receptor family from Arabidopsis: structure and function, Philos. Trans. R. Soc. Lond. B: Biol. Sci., 1998, vol. 353, no. 1374 pp. 1405–1412.

    Article  CAS  Google Scholar 

  36. Ecker, J.R., The ethylene signal transduction pathway in plants, Science, 1995, vol. 268, pp. 667–675.

    Article  CAS  PubMed  Google Scholar 

  37. Bishopp, A., Mähönen, A.P., and Helariutta, Y., Signs of change: hormone receptors that regulate plant development, Development, 2006, vol. 133, pp. 1857–1869.

    Article  CAS  PubMed  Google Scholar 

  38. Van Der Straeten, D., Djudzman, A., van Caeneghem, W., Smalle, J., and van Montagu, M., Genetic and physiological analysis of a new locus in Arabidopsis that confers resistance to 1-aminocyclopropane-1-carboxylic acid and ethylene and specifically affects the ethylene signal transduction pathway, Plant Physiol., 1993, vol. 102, pp. 401–408.

    Google Scholar 

  39. Wang, K., Li, H., and Ecker, J., Ethylene biosynthesis and signaling networks, Plant Cell, 2002, vol. 14: S131–S151.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodrigues-Pousada, R.A., de Rycke, R., Dedonder, A., van Caeneghem, W., Engler, G., van Montagu, M., and Van Der Straeten, D., The Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene 1 is expressed during early development, Plant Cell, 1993, vol. 5, pp. 897–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Cnodder, T., Vissenberg, K., Van Der Straeten, D., and Verbelen, J.-P., Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions, New Phytol., 2005, vol. 168, pp. 541–550.

    Article  CAS  PubMed  Google Scholar 

  42. Staal, M., de Cnodder, T., Simon, D., Vandenbussche, F., Van Der Straeten, D., Verbelen, J.-P., Elzenga, T., and Vissenberg, K., Apoplastic alkalinisation is instrumental for the inhibition of cell elongation in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), Plant Physiol., 2011, vol. 155, pp. 2049–2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Le, J., Vandenbussche, F., Van Der Straeten, D., and Verbelen, J.-P., In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation, Plant Physiol., 2001, vol. 125, pp. 519–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto, C., Sakata, Y., Taji, T., Baba, T., and Tanaka, S., Unique ethylene-regulated touch responses of Arabidopsis thaliana roots to physical hardness, J. Plant Res., 2008, vol. 121, pp. 509–519.

    Article  CAS  PubMed  Google Scholar 

  45. Leister, D., Varotto, C., Pesaresi, P., Niwergall, A., and Salamini, F., Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis, Plant Physiol. Biochem., 1999, vol. 37, pp. 671–678.

    Article  CAS  Google Scholar 

  46. Jansen, M., Gilmer, F., Biskup, B., Nagel, K.A., Rascher, U., Fischbach, A., Briem, S., Dreissen, G., Tittmann, S., Braun, S., de Jaeger, I., Metzlaff, M., Schurr, U., Scharr, H., and Walter, A., Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants, Funct. Plant Biol., 2009, vol. 36, pp. 902–914.

    Article  CAS  Google Scholar 

  47. Arvidsson, S., Pérez-Rodríguez, P., and Mueller-Roeber, B., A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects, New Phytol., 2011, vol. 191, pp. 895–907.

    Article  PubMed  Google Scholar 

  48. French, A.P., Wilson, M.H., Kenobi, K., Dietrich, D., Voß, U., Ubeda-Tomás, S., Pridmore, T.P., and Wells, D.M., Identifying biological landmarks using a novel cell measuring image analysis tool: Cell-o-Tape, Plant Methods, 2012, vol. 8, pp. 1–7.

    Article  Google Scholar 

  49. De Vylder, J., Vandenbussche, F., Hu, Y., Philips, W., and Van Der Straeten, D., Rosette Tracker: an open source image analysis tool for automatic quantification of genotype effects, Plant Physiol., 2012, vol. 160, pp. 1149–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stepanova, A.N., Yun, J., Likhacheva, A.V., and Alonso, J.M., Multilevel interactions between ethylene and auxin in Arabidopsis roots, Plant Cell, 2007, vol. 19, pp. 2169–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Růžička, K., Ljung, K., Vanneste, S., Podhorská, R., Beeckman, T., Friml, J., and Benková, E., Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution, Plant Cell, 2007, vol. 19, pp. 2197–2212.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A.H., Beeckman, T., Kepinski, S., Traas, J., Bennett, M.J., and Vernoux, T., A novel sensor to map auxin response and distribution at high spatio-temporal resolution, Nature, 2012, vol. 482, pp. 103–106.

    Article  CAS  PubMed  Google Scholar 

  53. Brady, S.M., Orlando, D.A., Lee, J.Y., Wang, J.Y., Koch, J., Dinneny, J.R., Mace, D., Ohler, U., and Benfey, P.N., A high-resolution root spatiotemporal map reveals dominant expression patterns, Science, 2007, vol. 318, no. 5851 pp. 801–806.

    Article  CAS  PubMed  Google Scholar 

  54. Cartwright, D.A., Brady, S.M., Orlando, D.A., Strumfels, B., and Benfey, P.N., Reconstructing spatiotemporal gene expression data from partial observations, Bioinformatics, 2009, vol. 25, no. 19 pp. 2581–2587.

    Article  CAS  PubMed  Google Scholar 

  55. Hruz, T., Laule, O., Szabo, G., Wessendorp, F.S., Oertle, L., Widmayer, P., Gruissem, W., and Zimmermann, P., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, Adv. Bioinformatics, 2008, vol. 2008, art. ID 420747. doi 10.1155/2008/420747

  56. Obayashi, T., Kinoshita, K., Nakai, K., Shibaoka, M., Hayashi, S., Saeki, M., Shibata, D., Saito, K., and Ohta, H., ATTED-II: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis, Nucleic Acids Res., 2007, vol. 35: D863–D869.

    Article  CAS  PubMed  Google Scholar 

  57. Aoki, Y., Okamura, Y., Tadaka, S., Kinoshita, K., and Obayashi, T., ATTED-II in 2016: a plant coexpression database towards lineage-specific coexpression, Plant Cell Physiol., 2016, vol. 57, p. e5. doi 10.1093/pcp/pcv165

    Article  PubMed  Google Scholar 

  58. Achard, P., Cheng, H., de Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., and Harberd, N.P., Integration of plant responses to environmentally activated phytohormonal signals, Science, 2006, vol. 311, pp. 91–94.

    Article  CAS  PubMed  Google Scholar 

  59. Cao, W.H., Liu, J., He, X.J., Mu, R.L., Zhou, H.L., Chen, S.Y., and Zhang, J.S., Modulation of ethylene responses affects plant salt-stress responses, Plant Physiol., 2007, vol. 143, pp. 707–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, Y., Liu, C., Li, K., Sun, F., Hu, H., Li, X., Zhao, Y., Han, C., Zhang, W., Duan, Y., Liu, M., and Li, X., Arabidopsis EIN2 modulates stress response through abscisic acid response pathway, Plant Mol. Biol., 2007, vol. 64, pp. 633–644.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, X., Yang, P., Gao, Q., Liu, X., Kuang, T., Shen, S., and He, Y., Proteomic analysis of the response to high-salinity stress in Physcomitrella patens, Planta, 2008, vol. 228, pp. 167–177.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Van Der Straeten.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaseva, I.I., Vandenbussche, F., Simon, D. et al. Cell type specificity of plant hormonal signals: Case studies and reflections on ethylene. Russ J Plant Physiol 63, 577–586 (2016). https://doi.org/10.1134/S1021443716050149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716050149

Keywords

Navigation