Skip to main content
Log in

Unique ethylene-regulated touch responses of Arabidopsis thaliana roots to physical hardness

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Although touch responses of plant roots are an important adaptive behavior, the molecular mechanism remains unclear. We have developed a bioassay for measuring root-bending responses to physical hardness in Arabidopsis thaliana seedlings. Our test requires a two-layer solid medium. Primary roots growing downward through an upper layer of 0.3% phytagel either penetrate the lower layer or bend along an interface between the upper and lower layers with different concentrations (0.2–0.5%, corresponding to 1.57–6.79 gw mm−2 in hardness). In proportion to increasing hardness of the lower layer, we found that the percentage of bending roots increased and ethylene production decreased, suggesting an inverse relationship between the root-bending response and ethylene production. Studies with ethylene biosynthesis modulators and mutants also suggested that bending and non-bending responses of roots to medium hardness depend, respectively, on decreased and increased ethylene biosynthesis. In addition, the degrees of root-tip softening and differential root-cell growth, both possible factors determining root-bending response, were enhanced and attenuated by decreased and increased amounts of ethylene, respectively—also in bending roots and non-bending roots. Our findings indicate that ethylene regulates root touch responses, probably through a combination of root-tip softening (or hardening) and differential root-cell growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Arteca JM, Arteca RN (1999) A multi-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase (ACS6) in mature Arabidopsis leaves. Plant Mol Biol 39:209–219

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt C, Tierney ML (2000) Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol 122:705–714

    Article  PubMed  CAS  Google Scholar 

  • Biddington N (1986) The effects of mechanically-induced stress in plants—a review. Plant Growth Regul 4:103–123

    Article  CAS  Google Scholar 

  • Biro R, Jaffe M (1984) Thigmomorphogenesis: ethylene evolution and its role in the changes observed in mechanically perturbed bean plants. Physiol Plant 62:289–296

    Article  CAS  Google Scholar 

  • Botella JR, Arteca RN, Frangos JA (1995) A mechanical strain-induced 1-aminocyclopropane-1-carboxylic acid synthase gene. Proc Natl Acad Sci USA 92:1595–1598

    Article  PubMed  CAS  Google Scholar 

  • Boyer N, Desbiez MO, Hofinger M, Gaspar T (1983) Effect of lithium on thigmomorphogenesis in Bryonia dioica ethylene production and sensitivity. Plant Physiol 72:522–525

    PubMed  CAS  Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    Article  PubMed  Google Scholar 

  • Brown K, Leopold A (1972) Ethylene and the regulation of growth in pine. Can J For Res 3:143–145

    Article  Google Scholar 

  • Chae HS, Faure F, Kieber JJ (2003) The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15:545–559

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  PubMed  CAS  Google Scholar 

  • Chotikacharoensuk T, Arteca RN, Arteca JM (2006) Use of differential display for the identification of touch-induced genes from an ethylene-insensitive Arabidopsis mutant and partial characterization of these genes. J Plant Physiol 163:1305–1320

    Article  PubMed  CAS  Google Scholar 

  • Darwin C, Darwin F (1880) The power of movement in plants. John Murray, London

    Google Scholar 

  • De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen JP (2005) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions. New Phytol 168:541–550

    Article  PubMed  CAS  Google Scholar 

  • de Jaegher G, Boyer N, Bon M-C, Gaspar T (1987) Thigmomorphogenesis in Bryonia dioica: early events in ethylene biosynthesis pathway. Biochem Physiol Pfl 182:49–56

    Google Scholar 

  • Goeschl J, Rappaport L, Pratt H (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41:877–884

    Article  PubMed  CAS  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed  Google Scholar 

  • Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24:655–665

    Article  PubMed  CAS  Google Scholar 

  • Inaba K, Fujiwara T, Hayashi H, Chino M, Komeda Y, Naito S (1994) Isolation of an Arabidopsis thaliana mutant, mto1, that overaccumulates soluble methionine (temporal and spatial patterns of soluble methionine accumulation). Plant Physiol 104:881–887

    PubMed  CAS  Google Scholar 

  • Johnson KA, Sistrunk ML, Polisensky DH, Braam J (1998) Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2. Plant Physiol 116:643–649

    Article  PubMed  CAS  Google Scholar 

  • Kimbrough JM, Salinas-Mondragon R, Boss WF, Brown CS, Sederoff HW (2004) The fast and transient transcriptional network of gravity and mechanical stimulation in the Arabidopsis root apex. Plant Physiol 136:2790–2805

    Article  PubMed  CAS  Google Scholar 

  • Le J, Vandenbussche F, Van Der Straeten D, Verbelen JP (2001) In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiol 125:519–522

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Polisensky DH, Braam J (2005) Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol 165:429–444

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Chang WK, Evans ML (1990) Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays. Plant Physiol 94:1770–1775

    PubMed  CAS  Google Scholar 

  • Legué V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800

    Article  PubMed  Google Scholar 

  • Lizada MC, Yang SF (1979) A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem 100:140–145

    Article  PubMed  CAS  Google Scholar 

  • Massa GD, Gilroy S (2003a) Touch modulates gravity sensing to regulate the growth of primary roots of Arabidopsis thaliana. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • Massa GD, Gilroy S (2003b) Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots. Adv Space Res 31:2195–2202

    Article  PubMed  CAS  Google Scholar 

  • Meyerhoff O, Müller K, Roelfsema MR, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222:418–427

    Article  PubMed  CAS  Google Scholar 

  • Mitchell CA (1996) Recent advances in plant response to mechanical stress: theory and application. HortScience 31:31–35

    PubMed  CAS  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644

    Article  PubMed  CAS  Google Scholar 

  • Okadome H, Toyoshima H, Ohtsubo K (1999) Multiple measurements of physical properties of individual cooked rice grains with a single apparatus. Cereal Chem 76:855–860

    Article  CAS  Google Scholar 

  • Okamoto T, Tsurumi S, Shibasaki K, Obana Y, Takaji H, Oono Y, Rahman A (2008) Genetic dissection of hormonal responses in the roots of Arabidopsis grown under continuous mechanical impedance. Plant Physiol 146:1651–1662

    Article  PubMed  CAS  Google Scholar 

  • Passioura JB (2002) Soil conditions and plant growth. Plant Cell Environ 25:311–318

    Article  PubMed  Google Scholar 

  • Perovic S, Seack J, Gamulin V, Müller WE, Schröder HC (2001) Modulation of intracellular calcium and proliferative activity of invertebrate and vertebrate cells by ethylene. BMC Cell Biol 2:7

    Article  PubMed  CAS  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796

    Article  PubMed  CAS  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Suge H (1980) Sex expression in cucumber plants as affected by mechanical stress. Plant Cell Physiol 21:303–310

    CAS  Google Scholar 

  • Tatsuki M, Mori H (1999) Rapid and transient expression of 1-aminocyclopropane-1-carboxylate synthase isogenes by touch and wound stimuli in tomato. Plant Cell Physiol 40:709–715

    PubMed  CAS  Google Scholar 

  • Vahala J, Ruonala R, Keinänen M, Tuominen H, Kangasjärvi J (2003) Ethylene insensitivity modulates ozone-induced cell death in birch. Plant Physiol 132:185–195

    Article  PubMed  CAS  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771

    Article  PubMed  CAS  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(Suppl):S131–S151

    PubMed  CAS  Google Scholar 

  • Young LM, Evans ML (1994) Calcium-dependent asymmetric movement of 3H-indole-3-acetic acid across gravistimulated isolated root caps of maize. Plant Growth Regul 14:235–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Katsumi Takano of our faculty and Yoshimasa Tujii (Alpha Food Co., Ltd) for helpful suggestions and discussions about hardness measurements and to Genta Miyakawa, Yukie Kami, and Akitsugu Koizumi for technical assistance. This work was supported in part by a Science Research Promotion Fund from the Promotion and Mutual Aid Corporation for Private Schools of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, C., Sakata, Y., Taji, T. et al. Unique ethylene-regulated touch responses of Arabidopsis thaliana roots to physical hardness. J Plant Res 121, 509–519 (2008). https://doi.org/10.1007/s10265-008-0178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-008-0178-4

Keywords

Navigation