Skip to main content
Log in

Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Development of transgenic plants with modified seed storage protein composition and increased nutritive value is one of the most promising areas of genetic engineering. This task is especially important for sorghum—a unique drought tolerant cereal crop that is characterized, however, by a relatively poor nutritive value in comparison with other cereals. It is considered that one of the reasons of the low nutritive value of the sorghum grain is the resistance of one of its seed storage proteins, γ-kafirin, located in the outer layer of endosperm protein bodies, to protease digestion. Using Agrobacterium-mediated genetic transformation, we obtained transgenic sorghum plants (Sorghum bicolor (L.) Moench) harboring a genetic construct for RNAi silencing of the γ-kafirin gene. In the T1 generation, the plants with almost floury or modified endosperm texture of kernels were found. In these kernels, the vitreous endosperm layer has been reduced and/or covered by a thin layer of floury endosperm. In vitro protein digestibility (IVPD) analysis showed that the amount of undigested protein in transgenic plants from the T3 generation was reduced by 2.9–3.2 times, in comparison with the original non-transgenic line, and the digestibility index reached 85–88% (in comparison with 59% in the original line). In T2 families, the plants combining high IVPD with vitreous endosperm type were found. In the electrophoretic spectra of endosperm proteins of transgenic plants with increased digestibility, the proportion of 20 kD protein that is encoded by the γ-kafirin gene, was significantly reduced, in comparison with the original non-transgenic line. HPLC analysis showed total amino acid content in two out of the three studied transgenic plants from the T2 generation was reduced in comparison with the original non-transgenic line, while the lysine proportion increased by 1.6–1.7 times. The mechanisms conditioning improved digestibility of storage proteins in transgenic plants are discussed. The results of experiments demonstrate that it is feasible to develop sorghum lines combining high protein digestibility and vitreous endosperm that has a high breeding value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MS:

Murashige and Skoog medium

IAA:

Indole acetic acid

GA:

glufosinate ammonium

SDS:

sodium dodecyl sulfate

Zh10:

Zheltozyornoe 10

References

  1. Shewry, P.R., Improving the protein content and composition of cereal grain, J. Cereal Sci., 2007, vol. 46, pp. 239–250.

    Article  CAS  Google Scholar 

  2. Godwin, I.D., Williams, S.B., Pandit, P.S., and Laidlaw, H.K.C., Multifunctional grains for the future: genetic engineering for enhanced and novel cereal quality, In Vitro Cell. Dev. Biol.–Plant, 2009, vol. 45, pp. 383–399.

    Article  CAS  Google Scholar 

  3. Segal, G., Song, R., and Messing, J., A new opaque variant of maize by a single dominant RNA-interference-inducing transgene, Genetics, 2003, vol. 165, pp. 387–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, S., Frizzi, A., Florida, C.A., Kruger, D.E., and Luethy, M.H., High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kD α-zeins, Plant Mol. Biol., 2006, vol. 61, pp. 525–535.

    Article  CAS  PubMed  Google Scholar 

  5. Wu, Y., Holding, D.R., and Messing, J., γ-Zeins are essential for endosperm modification in quality protein maize, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 12810–12815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo, X., Yuan, L., Chen, H., Sato, S.J., Clemente, T.E., and Holding, D.R., Non-redundant function of zeins and their correct stoichiometric ratio drive protein body formation in maize endosperm, Plant Physiol., 2013, vol. 162, pp. 1359–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belton, P.S., Delgadillo, I., Halford, N.G., and Shewry, P.R., Kafirin structure and functionality, J. Cereal Sci., 2006, vol. 44, pp. 272–286.

    Article  CAS  Google Scholar 

  8. De Mesa-Stonestreet, N.J., Alavi, S., and Bean, S.R., Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins, J. Food Sci., 2010, vol. 75, pp. 90–104.

    Article  Google Scholar 

  9. Oria, M.P., Hamaker, B.R., and Shull, J.M., Resistance of sorghum α-, β- and γ-kafirins to pepsin digestion, J. Agric. Food Chem., 1995, vol. 43, pp. 2148–2153.

    Article  CAS  Google Scholar 

  10. Oria, M.P., Hamaker, B.R., Axtell, J.D., and Huang, C.P., A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 5065–5070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Howe, A., Sato, S., Dweikat, I., Fromm, M., and Clemente, T., Rapid and reproducible Agrobacteriummediated transformation of sorghum, Plant Cell Rep., 2006, vol. 25, pp. 784–791.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, E., Lenderts, B., Glassman, K., Berezowska-Kaniewska, M., Christensen, H., Asmus, T., Zhen, S., Chu, U., Cho, M.J., and Zhao, Z.Y., Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants, InVitro Cell. Dev. Biol.–Plant, 2014, vol. 50, pp. 9–18.

    Article  Google Scholar 

  13. Katoch, R. and Thakur, N., Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants, Appl. Biochem. Biotechnol., 2013, vol. 169, pp. 1579–1605.

    Article  CAS  PubMed  Google Scholar 

  14. Younis, A., Siddique, M.I., Kim, C.K., and Lim, K.B., RNA interference (RNAi) induced gene silencing: a promising approach of hi-tech plant breeding, Int. J. Biol. Sci., 2014, vol. 10, pp. 1150–1158.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Da Silva, L.S., Taylor, J., and Taylor, J.R., Transgenic sorghum with altered kafirin synthesis: kafirin solubility, polymerization, and protein digestion, J. Agric. Food Chem., 2011, vol. 59, pp. 9265–9270.

    Article  CAS  PubMed  Google Scholar 

  16. Da Silva, L.S., Jung, R., Zhao, Z., Glassman, K., Grootboom, A.W., Mehlo, L., O’Kennedy, M.M., Taylor, J., and Taylor, J.R.N., Effect of suppressing the synthesis of different kafirin subclasses on grain endosperm texture, protein body structure and protein nutritional quality in improved sorghum lines, J. Cereal Sci., 2011, vol. 54, pp. 160–167.

    Article  CAS  Google Scholar 

  17. Kumar, T., Dweikat, I., Sato, S., Ge, Z., Nersesian, N., Chen, H., Elthon, T., Bean, S., Ioerger, B.P., and Tilley, M., Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench), Plant Biotechnol. J., 2012, vol. 10, pp. 533–544.

    Article  CAS  PubMed  Google Scholar 

  18. Grootboom, A.W., Mkhonza, N.L., Mbambo, Z., O’Kennedy, M.M., Silva, L.S., Taylor, J., Taylor, J.R.N., Chikwamba, R., and Mehlo, L., Co-suppression of synthesis of major α-kafirin sub-class together with γ-kafirin-1 and γ-kafirin-2 required for substantially improved protein digestibility in transgenic sorghum, Plant Cell Rep., 2014, vol. 33, pp. 521–537.

    Article  CAS  PubMed  Google Scholar 

  19. De Barros, E.G., Takasaki, K., Kirleis, A.W., and Larkins, B.A., Nucleotide sequence of a cDNA clone encoding γ-kafirin protein from Sorghum bicolor, Plant Physiol., 1991, vol. 97, pp. 1606–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gelvin, S.B., Agrobacterium virulence gene induction, Agrobacterium Protocols, vol. 1, Ser. Methods in Molecular Biology, vol. 343, Wang, K., Ed., Totowa, NJ: Humana Press Inc., 2006, P. 77–84.

    Google Scholar 

  21. Chilton, M.-D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P., and Nester, E.W., Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors, Proc. Natl. Acad. Sci. USA, 1974, vol. 71, pp. 3672–3676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao, Z.Y., Cai, T.S., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., and Pierce, D., Agrobacterium-mediated sorghum transformation, Plant Mol. Biol., 2000, vol. 44, pp. 789–798.

    Article  CAS  PubMed  Google Scholar 

  23. Elkonin, L.A. and Pakhomova, N.V., Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum, Plant Cell Tissue Organ Cult., 2000, vol. 61, pp. 115–123.

    Article  Google Scholar 

  24. Doyle, J.J. and Doyle, J.L., A rapid total DNA preparation procedure for fresh plant tissue, Focus, 1990, vol. 12, pp. 13–15.

    Google Scholar 

  25. Weaver, C.A., Hamaker, B.R., and Axtell, J.D., Discovery of grain sorghum germplasm with high uncooked and cooked in vitro protein digestibility, Cereal Chem., 1998, vol. 75, pp. 665–670.

    Article  CAS  Google Scholar 

  26. Nunes, A., Correia, I., Barros, A., and Delgadillo, I., Sequential in vitro pepsin digestion of uncooked and cooked sorghum and maize samples, J. Agric. Food Chem., 2004, vol. 52, pp. 2052–2058.

    Article  CAS  PubMed  Google Scholar 

  27. Elkonin, L.A., Italianskaya, J.V., Fadeeva, I.Yu., Bychkova, V.V., and Kozhemyakin, V.V., In vitro protein digestibility in grain sorghum: effect of genotype and interaction with starch digestibility, Euphytica, 2013, vol. 193, pp. 327–337.

    Article  CAS  Google Scholar 

  28. Aboubacar, A., Axtell, J.D., Huang, C.P., and Hamaker, B.R., A rapid protein digestibility assay for identifying highly digestible sorghum lines, Cereal Chem., 2001, vol. 78, pp. 160–165.

    Article  CAS  Google Scholar 

  29. Wong, J.H., Marx, D.B., Wilson, J.D., Buchanan, B.B., Lemaux, P.G., and Pedersen, J.F., Principal component analysis and biochemical characterization of protein and starch reveal primary targets for improving sorghum grain, Plant Sci., 2010, vol. 179, pp. 598–611.

    Article  CAS  Google Scholar 

  30. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  31. Emani, C., Sunilkumar, G., and Rathore, K.S., Transgene silencing and reactivation in sorghum, Plant Sci., 2002, vol. 162, pp. 181–192.

    Article  CAS  Google Scholar 

  32. Shull, J.M., Watterson, J.J., and Kirleis, A.W., Proposed nomenclature for the alcohol soluble proteins (kafirins) of Sorghum bicolor (L. Moench) based on molecular weight, solubility and structure, J. Agric. Food Chem., 1991, vol. 39, pp. 83–87.

    Article  CAS  Google Scholar 

  33. Shull, J.M., Watterson, J.J., and Kirleis, A.W., Purification and immunocytochemical localization of kafirins in Sorghum bicolor (L. Moench) endosperm, Protoplasma, 1992, vol. 171, pp. 64–74.

    Article  CAS  Google Scholar 

  34. Wu, Y., Yuan, L., Guo, X., Holding, D.R., and Messing, J., Mutation in the seed storage protein kafirin creates a high-value food trait in sorghum, Nat. Commun., 2013, vol. 4, p.2217. doi: doi 10.1038/ncoмMs3217

    PubMed  Google Scholar 

  35. De Freitas, F., Yunes, J.A., da Silva, M.J., Arruda, P., and Leite, A., Structural characterization and promoter activity analysis of the γ-kafirin gene from sorghum, Mol. Gen. Genet., 1994, vol. 245, pp. 177–186.

    Article  CAS  PubMed  Google Scholar 

  36. Italianskaya, J.V., Elkonin, L.A., and Kozhemyakin, V.V., Characterization of kafirin composition and in vitro digestibility in CMS-lines, fertility restorers and F1 hybrids with the new types of CMS-inducing cytoplasms of sorghum, Plant Breed., 2009, vol. 128, pp. 624–630.

    Article  CAS  Google Scholar 

  37. Tesso, T., Ejeta, G., Chandrashekar, A., Huang, C.P., Tandjung, A., Lewamy, M., Axtell, J., and Hamaker, B.R., A novel modified endosperm texture in a mutant high-protein digestibility/high-lysine grain sorghum (Sorghum bicolor (L.) Moench), Cereal Chem., 2006, vol. 83, pp. 194–201.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Elkonin.

Additional information

Published in Russian in Fiziologiya Rastenii, 2016, Vol. 63, No. 5, pp. 721–734.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkonin, L.A., Italianskaya, J.V., Domanina, I.V. et al. Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russ J Plant Physiol 63, 678–689 (2016). https://doi.org/10.1134/S1021443716050046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716050046

Keywords

Navigation