Skip to main content
Log in

Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The spectra of open angular waveguides obtained by thickening or thinning the links of a thin square lattice of quantum waveguides (the Dirichlet problem for the Helmholtz equation) are investigated. Asymptotics of spectral bands and spectral gaps (i.e., zones of wave transmission and wave stopping, respectively) for waveguides with variously shaped periodicity cells are found. It is shown that there exist eigenfunctions of two types: localized around nodes of a waveguide and on its links. Points of the discrete spectrum of a perturbed lattice with eigenfunctions concentrated about corners of the waveguide are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.-S. Bonnet-Bendhia and F. Starling, “Guided waves by electromagnetic gratings and nonuniqueness examples for the diffraction problem,” Math. Meth. Appl. Sci. 17, 305–338 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain,” in Sobolev Spaces in Mathematics, Vol. 2, Ed. by V. Maz’ya (Springer, New York, 2008), pp. 261–309.

    Google Scholar 

  3. I. M. Gel’fand, “Eigenfunction expansion for an equation with periodic coefficients,” Dokl. Akad. Nauk SSSR 73, 1117–1120 (1950).

    Google Scholar 

  4. P. A. Kuchment, “Floquet theory for partial differential equations,” Russ. Math. Surv. 37 (4), 1–60 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. M. Skriganov, “Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators,” Proc. Steklov Inst. Math. 171 (2), 1–121 (1987).

    MathSciNet  MATH  Google Scholar 

  6. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, 1994).

    Book  MATH  Google Scholar 

  7. P. Kuchment, Floquet Theory for Partial Differential Equations (Birkhäuser, Basel, 1993).

    Book  MATH  Google Scholar 

  8. A.-S. Bonnet-Ben Dhia, G. Dakhia, C. Hazard, and L. Chorfi, “Diffraction by a defect in an open waveguide: A mathematical analysis based on a modal radiation condition,” SIAM J. Appl. Math. 70 (3), 677–693 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. A.-S. Bonnet-Ben Dhia, B. Goursaud, and C. Hazard, “Mathematical analysis of the junction of two acoustic open waveguides,” SIAM J. Appl. Math. 71 (6), 2048–2071 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Cardone, S. A. Nazarov, and J. Taskinen, “Spectra of open waveguides in periodic media,” J. Funct. Anal. 269 (8), 2328–2364 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. P. Carini, J. T. Londergan, and D. P. Murdock, Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides, and Photonic Crystals (Springer-Verlag, Berlin, 1999).

    MATH  Google Scholar 

  12. S. A. Nazarov, “Discrete spectrum of cross-shaped quantum waveguides,” in Problems in Mathematical Analysis (Novosibirsk, 2013), Vol. 73, pp. 101–127 [in Russian].

    Google Scholar 

  13. S. A. Nazarov, Discrete spectrum of cranked, branching, and periodic waveguides," St. Petersburg Math. J. 23 (2), 351–379 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  14. S. A. Nazarov and A. V. Shanin, “Trapped modes in angular joints of 2D waveguides,” Appl. Anal. 93 (3), 572–582 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. A. Nazarov, “The spectrum of rectangular gratings of quantum waveguides,” Izv. Ross. Akad. Nauk, Ser. Mat. 81 (1) (2017) (in press).

    Google Scholar 

  16. D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. 97 (3), 718–752 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. A. Nazarov, “On the spectrum of an infinite Dirichlet ladder,” St. Petersburg Math. J. 23, 1023–1045 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Sh. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Leningr. Gos. Univ., Leningrad, 1980; Reidel, Dordrecht, 1987).

    Google Scholar 

  19. S. A. Nazarov, “Elliptic boundary value problems with periodic coefficients in a cylinder,” Izv. Akad. Nauk SSSR, Ser. Mat. 45 (1), 101–112 (1981).

    MathSciNet  MATH  Google Scholar 

  20. S. A. Nazarov, “Variational and asymptotic methods for finding eigenvalues below the continuous spectrum threshold,” Sib. Math. J. 51 (5), 866–878 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. A. Nazarov, “Trapped modes in a T-shaped waveguide,” Acoust. Phys. 56 (6), 1004–1015 (2010).

    Article  Google Scholar 

  22. S. A. Nazarov, “Asymptotics of eigenvalues of the Dirichlet problem in a skewed T-shaped waveguide,” Comput. Math. Math. Phys. 54 (5), 811–830 (2014).

    Article  MathSciNet  Google Scholar 

  23. M. I. Vishik and L. A. Lyusternik, “Regular degeneration and boundary layer for linear differential equations with small parameter,” Usp. Mat. Nauk 12 (5), 3–122 (1957).

    MathSciNet  MATH  Google Scholar 

  24. S. A. Nazarov, “Structure of the spectrum of a net of quantum waveguides and bounded solutions of a model problem at the threshold,” Dokl. Math. 90 (2), 637–641 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. A. Nazarov, “Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder,” Comput. Math. Math. Phys. 54 (8), 1261–1279 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  26. S. A. Nazarov, “Localization of elastic oscillations in cross-shaped planar orthotropic waveguides,” Phys.-Dokl. 59 (9), 411–415 (2014).

    Article  Google Scholar 

  27. M. D. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964; Mir, Moscow, 1967).

    MATH  Google Scholar 

  28. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; Am. Math. Soc., RI, Providence, 1992).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Nazarov.

Additional information

Original Russian Text © S.A. Nazarov, 2017, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2017, Vol. 57, No. 1, pp. 144–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A. Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum. Comput. Math. and Math. Phys. 57, 156–174 (2017). https://doi.org/10.1134/S0965542517010110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542517010110

Keywords

Navigation