Skip to main content
Log in

Integration of Vestibular, Visual, and Proprioceptive Inputs in the Cerebral Cortex during Movement Control

  • REVIEWS
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The review of the literature data is devoted to the integration of vestibular, visual, and proprioceptive inputs in various areas of the cerebral cortex in humans and monkeys during movement control. Despite the abundance of studies of numerous areas of the cortex with vestibular and sensorimotor inputs, their functions and connections are insufficiently studied and understood. The review provides a relatively detailed analysis of data from recent studies of three areas of the cortex involved in motion control: the posterior parietal area 7a, in which responses to a combined visual-vestibular stimulus had a tendency for the vestibular input to dominate over the visual one; the cingulate sulcus visual area, which presumably integrates not only visual and vestibular afferent signals, but also proprioceptive signals from the lower limbs, thereby providing interaction between the sensory and motor systems during locomotion; and the area of the superior parietal lobule, in which the visual and somatic inputs interact allowing behavior control when reaching and grasping an object. It is concluded that it is necessary to combine complex natural tasks with normative behavioral models in future research in order to understand how the brain converts sensory input data into a behavioral format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Feldman, A.G. and Zhang, L., Eye and head move-ments and vestibulo-ocular reflex in the context of indirect, referent control of motor actions, J. Neurophysiol., 2020, vol. 124, no. 1, p. 115.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smith, A.T, Greenlee, M.W., DeAngelis, G.C., and Angelaki, D.E., Distributed visual–vestibular processing in the cerebral cortex of man and macaque, Multisens. Res., 2017, vol. 30, no. 2, p. 91.

    Article  Google Scholar 

  3. Chen, A., DeAngelis, G.C., and Angelaki, D.E., A comparison of vestibular spatiotemporal tuning in macaque parietoinsular vestibular cortex, ventral intraparietal area, and medial superior temporal area, J. Neurosci., 2011, vol. 31, no. 8, p. 3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Avila, E., Lakshminarasimhan, K.J., DeAngelis, G.C., and Angelaki, D.E., Visual and vestibular selectivity for self-motion in macaque posterior parietal area 7a, Cereb. Cortex, 2019, vol. 29, no. 9, p. 3932.

    Article  PubMed  Google Scholar 

  5. Smith, A.T., Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion, Brain Struct. Funct., 2021, vol. 226, no. 9, p. 2931.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gamberini, M., Passarelli, L., Filippini, M., et al., Vision for action: thalamic and cortical inputs to the macaque superior parietal lobule, Brain Struct. Funct., 2021, vol. 226, no. 9, p. 2951.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilber, A.A., Skelin, I., Wu, W., and McNaugh-ton, B.L., Laminar organization of encoding and memory reactivation in the parietal cortex, Neuron, 2017, vol. 95, no. 6, p. 1406.e5.

    Article  Google Scholar 

  8. Kondo, H., Saleem, K.S., and Price, J.L., Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys, J. Comp. Neurol., 2005, vol. 493, no. 4, p. 479.

    Article  PubMed  Google Scholar 

  9. Barrow, C.J. and Latto, R., The role of inferior parietal cortex and fornix in route following and topographic orientation in cynomolgus monkeys, Behav. Brain Res., 1996, vol. 75, nos. 1–2, p. 99.

    Article  CAS  PubMed  Google Scholar 

  10. Raffi, M. and Siegel, R.M., A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey, PLoS One, 2007, vol. 2, no. 2. e200

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pouget, A. and Sejnowski, T.J., Spatial transformations in the parietal cortex using basis functions, J. Cognit. Neurosci., 1997, vol. 9, no. 2, p. 222.

    Article  CAS  Google Scholar 

  12. Rozzi, S., Calzavara, R., Belmalih, A., et al., Cortical connections of the inferior parietal cortical convexity of the macaque monkey, Cereb. Cortex, 2006, vol. 16, no. 10, p. 1389.

    Article  PubMed  Google Scholar 

  13. Snyder, L.H., Grieve, K.L., Brotchie, P., and Andersen, R.A., Separate body- and world-referenced representations of visual space in parietal cortex, Nature, 1998, vol. 394, no. 6696, p. 887.

    Article  CAS  PubMed  Google Scholar 

  14. Britten, K.H., Mechanisms of self-motion perception, Annu. Rev. Neurosci., 2008, vol. 31, p. 389.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, A., DeAngelis, G.C., and Angelaki, D.E., Functional specializations of the ventral intraparietal area for multisensory heading discrimination, J. Neurosci., 2013, vol. 33, no. 8, p. 3567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Medendorp, W.P. and Heed, T., State estimation in posterior parietal cortex: distinct poles of environmental and bodily states, Prog. Neurobiol., 2019, vol. 183, p. 101691.

    Article  PubMed  Google Scholar 

  17. Dukelow, S.P., DeSouza, J.F.X., Culham, J.C., et al., Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements, J. Neurophysiol., 2001, vol. 86, no. 4, p. 1991.

    Article  CAS  PubMed  Google Scholar 

  18. Wall, M.B. and Smith, A.T., The representation of egomotion in the human brain, Curr. Biol., 2008, vol. 18, no. 3, p. 191.

    Article  CAS  PubMed  Google Scholar 

  19. Antal, A., Baudewig, J., Paulus, W., and Dechent, P., The posterior cingulate cortex and planum temporale/parietal operculum are activated by coherent visual motion, Visual Neurosci., 2008, vol. 25, no. 1, p. 17.

    Article  CAS  Google Scholar 

  20. Wada, A., Sakano, Y., and Ando, H., Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulation, Front. Psychol., 2016, vol. 7, p. 309.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pitzalis, S., Serra, C., Sulpizio, V.C., et al., Neural bases of self- and object-motion in a naturalistic vision, Hum. Brain Mapp., 2020, vol. 41, no. 4, p. 1084.

    Article  PubMed  Google Scholar 

  22. Smith, A.T., Beer, A.L., Furlan, M., and Mars, R.B., Connectivity of the cingulate sulcus visual area (CSv) in the human cerebral cortex, Cereb. Cortex, 2018, vol. 28, no. 2, p. 713.

    PubMed  Google Scholar 

  23. Cottereau, B.R., Smith, A.T., Rima, S., et al., Processing of egomotion-consistent optic flow in the rhesus macaque cortex, Cereb. Cortex, 2017, vol. 27, no. 1, p. 330.

    PubMed  PubMed Central  Google Scholar 

  24. Picard, N. and Strick, P.L., Imaging the premotor areas, Cur. Opin. Neurobiol., 2001, vol. 11, no. 6, p. 663.

    Article  CAS  Google Scholar 

  25. Fetsch, C.R., DeAngelis, G.C., and Angelaki, D.E., Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons, Nat. Rev. Neurosci., 2013, vol. 14, no. 6, p. 429.

    Article  CAS  PubMed  Google Scholar 

  26. Habas, C., Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T, Neuroradiology, 2010, vol. 52, no. 1, p. 47.

    Article  PubMed  Google Scholar 

  27. Serra, C., Galletti, C., Di Marco, S., et al., Egomotion-related visual areas respond to active leg movements, Hum. Brain Mapp. 2019, vol. 40, no. 11, p. 3174.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Graziano, M.S.A., Cooke, D.F., and Taylor, C.S.R., Coding the location of the arm by sight, Science, 2000, vol. 290, no. 5497, p. 1782.

    Article  CAS  PubMed  Google Scholar 

  29. Galletti, C. and Fattori, P., The dorsal visual stream revisited: stable circuits or dynamic pathways? Cortex, 2018, vol. 98, p. 203.

    Article  PubMed  Google Scholar 

  30. Galletti, C., Fattori, P., Gamberini, M., and Kutz, D.F., The cortical visual area V6: brain location and visual topography, Eur. J. Neurosci., 1999, vol. 11, no. 11, p. 3922.

    Article  CAS  PubMed  Google Scholar 

  31. Gamberini, M., Dal, B.G., Breveglieri, R., et al., Sensory properties of the caudal aspect of the macaque’s superior parietal lobule, Brain Struct. Funct., 2018, vol. 223, no. 4, p. 1863.

    PubMed  Google Scholar 

  32. De Vitis, M., Breveglieri, R., Hadjidimitrakis, K., et al., The neglected medial part of macaque area PE: segregated processing of reach depth and direction, Brain Struct. Funct., 2019, vol. 224, no. 7, p. 2537.

    Article  PubMed  Google Scholar 

  33. Galletti, C. and Fattori, P., Neuronal mechanisms for detection of motion in the field of view, Neuropsychologia, 2003, vol. 41, no. 13, p. 1717.

    Article  PubMed  Google Scholar 

  34. Gamberini, M., Passarelli, L., Fattori, P., and Galletti, C., Structural connectivity and functional properties of the macaque superior parietal lobule, Brain Struct. Funct., 2020, vol. 225, no. 4, p. 1349.

    Article  PubMed  Google Scholar 

  35. Fattori, P., Breveglieri, R., and Bosco, A. et al., Vision for prehension in the medial parietal cortex, Cereb. Cortex, 2017, vol. 27, no. 2, p. 1149.

    PubMed  Google Scholar 

  36. Pitzalis, S., Hadj-Bouziane, F., Dal Bò, G., et al., Optic flow selectivity in the macaque parieto-occipital sulcus, Brain Struct. Funct., 2021, vol. 226, no. 9, p. 2911.

    Article  PubMed  Google Scholar 

  37. Di Marco, S., Fattori, P., Galati, G., et al., Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas, Cortex, 2021, vol. 137, p. 74.

    Article  PubMed  Google Scholar 

  38. Hadjidimitrakis, K., Bertozzi, F., Breveglieri, R., et al., Temporal stability of reference frames in monkey area V6A during a reaching task in 3D space, Brain Struct. Funct., 2017, vol. 222, no. 4, p. 1959.

    Article  PubMed  Google Scholar 

  39. Diomedi, S., Vaccari, F.E., Filippini, M., et al., Mixed selectivity in macaque medial parietal cortex during eye-hand reaching, iScience, 2020, vol. 23, no. 10, p. 101616.

  40. Pitzalis, S., Serra, C., Sulpizio, V., et al., A putative human homologue of the macaque area PEc, NeuroImage 2019, vol. 202, p. 116092.

    Article  PubMed  Google Scholar 

  41. Rathelot, J.A., Dum, R.P., and Strick, P.L., Posterior parietal cortex contains a command apparatus for hand movements, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 16, p. 4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Passarelli, L., Gamberini, M., and Fattori, P., The superior parietal lobule of primates: a sensory-motor hub for interaction with the environment, J. Integr. Neurosci., 2021, vol. 20, no. 1, p. 157.

    Article  PubMed  Google Scholar 

  43. Cullen, K.E., Vestibular processing during natural self-motion: implications for perception and action, Nat. Rev. Neurosci., 2019, vol. 20, no. 6, p. 346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lakshminarasimhan, K.J., Pouget, A., DeAngelis, G.C., et al., Inferring decoding strategies for multiple correlated neural populations, PLoS Comput. Biol., 2018, vol. 14, no. 9. e1006371

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The funding was carried out within the basic theme of the Russian Academy of Sciences, project no. 63.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Miller.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the biomedical ethics principles formulated in the 1964 Helsinki Declaration and its later amendments and approved by the local Bioethics Committee of the Institute of Biomedical Problems, Russian Academy of Sciences (Moscow).

Conflict of interest. The authors declare that they do not have a conflict of interest.

Informed consent. Each study participant provided a signed voluntary written informed consent after explanation of the potential risks and benefits, as well as the nature of the upcoming study, to him.

Additional information

Translated by E. Babchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badakva, A.M., Miller, N.V. & Zobova, L.N. Integration of Vestibular, Visual, and Proprioceptive Inputs in the Cerebral Cortex during Movement Control. Hum Physiol 49, 176–182 (2023). https://doi.org/10.1134/S0362119722600515

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722600515

Keywords:

Navigation