Skip to main content

Sensorimotor Integration

  • Chapter
  • First Online:
Magnetoencephalography
  • 2347 Accesses

Abstract

A motor program for controlling one’s own movement requires sensory signals from the target body parts. The information for movement is provided by sensory feedback, as well as the integration of sensory information and motor command, all of which are critical for motor control. Recent studies suggested that cortical activity related to sensory response and perception is modified by movement executing mechanisms. However, this raises the question of how this system integrates motor command and sensory information whenever the intended movement is in progress. In this chapter, we review findings of sensorimotor integration and introduce results of our own studies using magnetoencephalography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. a review of scalp and intracranial recordings. Brain 114:2465–2503

    Article  Google Scholar 

  • Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330

    Article  Google Scholar 

  • Avikainen S, Forss N, Hari R (2002) Modulated activation of the human SI and SII cortices during observation of hand actions. Neuroimage 15(3):640–646

    Article  Google Scholar 

  • Blakemore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18(18):7511–7518

    Google Scholar 

  • Bocker KB, Forget R, Brunia CH (1993) The modulation of somatosensory evoked potentials during the foreperiod of a forewarned reaction time task. Electroencephalogr Clin Neurophysiol 88(2):105–117

    Article  Google Scholar 

  • Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391(6669):756

    Article  Google Scholar 

  • Burton H, Abend NS, MacLeod AM, Sinclair RJ, Snyder AZ, Raichle ME (1999) Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study. Cereb Cortex 9(7):662–674

    Article  Google Scholar 

  • Cardini F, Longo MR, Haggard P (2011) Vision of the body modulates somatosensory intracortical inhibition. Cereb Cortex 21(9):2014–2022

    Article  Google Scholar 

  • Cohen LG, Starr A (1987) Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man. Brain 110:451–467

    Article  Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman G (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773

    Article  Google Scholar 

  • Crapse TB, Sommer MA (2008) Corollary discharge circuits in the primate brain. Curr Opin Neurobiol 18(6):552–557

    Article  Google Scholar 

  • Desmedt JE, Nguyen TH, Bourguet M (1987) Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses. Electroencephalogr Clin Neurophysiol 68(1):1–19

    Article  Google Scholar 

  • Desmedt JE, Tomberg C (1989) Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P40, P100 and N140. Electroencephalogr Clin Neurophysiol 74(5):321–346

    Article  Google Scholar 

  • Eimer M, Forster B, Fieger A, Harbich S (2004) Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention. Clin Neurophysiol 115(3):596–608

    Article  Google Scholar 

  • Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18(2):324–333

    Article  Google Scholar 

  • Farrer C, Frey SH, Van Horn JD, Tunik E, Turk D, Inati S, Grafton ST (2008) The angular gyrus computes action awareness representations. Cereb Cortex 18(2):254–261

    Article  Google Scholar 

  • Forss N, Jousmaki V (1998) Sensorimotor integration in human primary and secondary somatosensory cortices. Brain Res 781(1–2):259–267

    Article  Google Scholar 

  • Fourneret P, Jeannerod M (1998) Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36(11):1133–1140

    Article  Google Scholar 

  • Fujiwara N, Imai M, Nagamine T, Mima T, Oga T, Takeshita K, Toma K, Shibasaki H (2002) Second somatosensory area (SII) plays a significant role in selective somatosensory attention. Brain Res Cogn Brain Res 14(3):389–397

    Google Scholar 

  • Garcia-Larrea L, Lukaszewicz AC, Mauguiere F (1995) Somatosensory responses during selective spatial attention: the N120-to-N140 transition. Psychophysiology 32(6):526–537

    Article  Google Scholar 

  • Graziano MSA (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Nat Acad Sci USA 96(18):10418–10421

    Article  Google Scholar 

  • Hari R, Hamalainen H, Hamalainen M, Kekoni J, Sams M, Tiihonen J (1990) Separate finger representations at the human second somatosensory cortex. Neuroscience 37(1):245–249

    Article  Google Scholar 

  • Hesse MD, Nishitani N, Fink GR, Jousmaki V, Hari R (2010) Attenuation of somatosensory responses to self-produced tactile stimulation. Cereb Cortex 20(2):425–432

    Article  Google Scholar 

  • Hoshiyama M, Sheean G (1998) Changes of somatosensory evoked potentials preceding rapid voluntary movement in Go/No-go choice reaction time task. Brain Res Cogn Brain Res 7(2):137–142

    Google Scholar 

  • Huttunen J, Wikstrom H, Korvenoja A, Seppalainen AM, Aronen H, Ilmoniemi RJ (1996) Significance of the second somatosensory cortex in sensorimotor integration: enhancement of sensory responses during finger movements. NeuroReport 7(5):1009–1012

    Article  Google Scholar 

  • Hyvarinen J, Poranen A, Jokinen Y (1980) Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. J Neurophysiol 43(4):870–882

    Google Scholar 

  • Ikeda A, Luders HO, Burgess RC, Shibasaki H (1992) Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain 115:1017–1043

    Article  Google Scholar 

  • Inoue K, Yamashita T, Harada T, Nakamura S (2002) Role of human SII cortices in sensorimotor integration. Clin Neurophysiol 113(10):1573–1578

    Article  Google Scholar 

  • Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R (2003) Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci 18(10):2859–2866

    Article  Google Scholar 

  • Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14(8):851–857

    Article  Google Scholar 

  • Iriki A, Tanaka M, Iwamura Y (1996) Attention-induced neuronal activity in the monkey somatosensory cortex revealed by pupillometrics. Neurosci Res 25(2):173–181

    Article  Google Scholar 

  • Jiang W, Chapman CE, Lamarre Y (1990) Modulation of somatosensory evoked responses in the primary somatosensory cortex produced by intracortical microstimulation of the motor cortex in the monkey. Exp Brain Res 80(2):333–344

    Article  Google Scholar 

  • Johansen-Berg H, Christensen V, Woolrich M, Matthews PM (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. NeuroReport 11(6):1237–1241

    Article  Google Scholar 

  • Jones EG, Coulter JD, Hendry SH (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Compative Neurol 181(2):291–347

    Article  Google Scholar 

  • Jones SJ, Halonen JP, Shawkat F (1989) Centrifugal and centripetal mechanisms involved in the ‘gating’ of cortical SEPs during movement. Electroencephalogr Clin Neurophysiol 74(1):36–45

    Article  Google Scholar 

  • Kakigi R, Koyama S, Hoshiyama M, Watanabe S, Shimojo M, Kitamura Y (1995) Gating of somatosensory evoked responses during active finger movements magnetoencephalographic studies. J Neurol Sci 128(2):195–204

    Article  Google Scholar 

  • Karnath HO, Baier B, Nagele T (2005) Awareness of the functioning of one’s own limbs mediated by the insular cortex? J Neurosci 25(31):7134–7138

    Article  Google Scholar 

  • Kawamura T, Nakasato N, Seki K, Kanno A, Fujita S, Fujiwara S, Yoshimoto T (1996) Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol 100(1):44–50

    Article  Google Scholar 

  • Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, Kakigi R (2007) Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention. J Neurophysiol 97(5):3585–3596

    Article  Google Scholar 

  • Kida T, Nishihira Y, Wasaka T, Sakajiri Y, Tazoe T (2004) Differential modulation of the short- and long-latency somatosensory evoked potentials in a forewarned reaction time task. Clin Neurophysiol 115(10):2223–2230

    Article  Google Scholar 

  • Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R (2006) Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. Neuroimage 32(3):1355–1364

    Article  Google Scholar 

  • Lin YY, Shih YH, Chen JT, Hsieh JC, Yeh TC, Liao KK, Kao CD, Lin KP, Wu ZA, Ho LT (2003) Differential effects of stimulus intensity on peripheral and neuromagnetic cortical responses to median nerve stimulation. Neuroimage 20(2):909–917

    Article  Google Scholar 

  • Lin YY, Simoes C, Forss N, Hari R (2000) Differential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses. Neuroimage 11(4):334–340

    Article  Google Scholar 

  • Macaluso E, Frith CD, Driver J (2000) Modulation of human visual cortex by crossmodal spatial attention. Science 289(5482):1206–1208

    Article  Google Scholar 

  • Mauguiere F, Merlet I, Forss N, Vanni S, Jousmaki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain: a dipole modelling study of magnetic fields evoked by median nerve stimulation. Part II: effects of stimulus rate, attention and stimulus detection. Electroencephalogr Clin Neurophysiol 104(4):290–295

    Article  Google Scholar 

  • Mima T, Nagamine T, Nakamura K, Shibasaki H (1998) Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 80(4):2215–2221

    Google Scholar 

  • Mottonen R, Jarvelainen J, Sams M, Hari R (2005) Viewing speech modulates activity in the left SI mouth cortex. Neuroimage 24(3):731–737

    Article  Google Scholar 

  • Murase N, Kaji R, Shimazu H, Katayama-Hirota M, Ikeda A, Kohara N, Kimura J, Shibasaki H, Rothwell JC (2000) Abnormal premovement gating of somatosensory input in writer’s cramp. Brain 123:1813–1829

    Article  Google Scholar 

  • Nakajima T, Wasaka T, Kida T, Nishimura Y, Fumoto M, Sakamoto M, Takashi E (2006) Changes in somatosensory evoked potentials and Hoffmann reflexes during fast isometric contraction of foot plantarflexor in humans. Percept Mot Skills 103(3):847–860

    Article  Google Scholar 

  • Nakata H, Inui K, Wasaka T, Nishihira Y, Kakigi R (2003) Mechanisms of differences in gating effects on short- and long-latency somatosensory evoked potentials relating to movement. Brain Topogr 15(4):211–222

    Article  Google Scholar 

  • Pihko E, Nangini C, Jousmaki V, Hari R (2010) Observing touch activates human primary somatosensory cortex. Eur J Neurosci 31(10):1836–1843

    Article  Google Scholar 

  • Pons TP, Garraghty PE, Friedman DP, Mishkin M (1987) Physiological evidence for serial processing in somatosensory cortex. Science 237(4813):417–420

    Article  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  Google Scholar 

  • Qiu Y, Inui K, Wang X, Nguyen BT, Tran TD, Kakigi R (2004) Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans. Clin Neurophysiol 115(3):636–646

    Article  Google Scholar 

  • Romo R, Hernandez A, Zainos A, Lemus L, Brody CD (2002) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5(11):1217–1225

    Article  Google Scholar 

  • Rossi S, Tecchio F, Pasqualetti P, Ulivelli M, Pizzella V, Romani GL, Passero S, Battistini N, Rossini PM (2002) Somatosensory processing during movement observation in humans. Clin Neurophysiol 113(1):16–24

    Article  Google Scholar 

  • Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104(3):465–491

    Article  Google Scholar 

  • Sambo CF, Gillmeister H, Forster B (2009) Viewing the body modulates neural mechanisms underlying sustained spatial attention in touch. Eur J Neurosci 30(1):143–150

    Article  Google Scholar 

  • Schmidt RF, Schady WJ, Torebjork HE (1990) Gating of tactile input from the hand. I. Effects of finger movement. Exp Brain Res 79(1):97–102

    Article  Google Scholar 

  • Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185(3):359–381

    Article  Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Compar Physiol Psychol 43(6):482–489

    Article  Google Scholar 

  • Staines WR, Graham SJ, Black SE, McIlroy WE (2002) Task-relevant modulation of contralateral and ipsilateral primary somatosensory cortex and the role of a prefrontal-cortical sensory gating system. Neuroimage 15(1):190–199

    Article  Google Scholar 

  • Starr A, Cohen LG (1985) ‘Gating’ of somatosensory evoked potentials begins before the onset of voluntary movement in man. Brain Res 348(1):183–186

    Article  Google Scholar 

  • Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404(6774):187–190

    Article  Google Scholar 

  • Taylor-Clarke M, Kennett S, Haggard P (2002) Vision modulates somatosensory cortical processing. Curr Biol 12(3):233–236

    Article  Google Scholar 

  • Torquati K, Pizzella V, Della Penna S, Franciotti R, Babiloni C, Rossini PM, Romani GL (2002) Comparison between SI and SII responses as a function of stimulus intensity. NeuroReport 13(6):813–819

    Article  Google Scholar 

  • vanBeers RJ, Sittig AC, vanderGon JJD (1996) How humans combine simultaneous proprioceptive and visual position information. Exp Brain Res 111(2):253–261

    Article  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip: Wechselwirkungen Zwischen Zentralnervensystem und Peripherie. Natursissenschaften 37:464–476

    Article  Google Scholar 

  • Wasaka T, Hoshiyama M, Nakata H, Nishihira Y, Kakigi R (2003) Gating of somatosensory evoked magnetic fields during the preparatory period of self-initiated finger movement. Neuroimage 20(3):1830–1838

    Article  Google Scholar 

  • Wasaka T, Kakigi R (2012a) Conflict caused by visual feedback modulates activation in somatosensory areas during movement execution. Neuroimage 59(2):1501–1507

    Article  Google Scholar 

  • Wasaka T, Kakigi R (2012b) The effect of unpredicted visual feedback on activation in the secondary somatosensory cortex during movement execution. BMC Neurosci 13(1):138

    Article  Google Scholar 

  • Wasaka T, Nakata H, Akatsuka K, Kida T, Inui K, Kakigi R (2005a) Differential modulation in human primary and secondary somatosensory cortices during the preparatory period of self-initiated finger movement. Eur J Neurosci 22(5):1239–1247

    Article  Google Scholar 

  • Wasaka T, Nakata H, Kida T, Kakigi R (2005b) Changes in the centrifugal gating effect on somatosensory evoked potentials depending on the level of contractile force. Exp Brain Res 166(1):118–125

    Article  Google Scholar 

  • Wikstrom H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100(6):479–487

    Article  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347

    Article  Google Scholar 

  • Zhang HQ, Murray GM, Coleman GT, Turman AB, Zhang SP, Rowe MJ (2001) Functional characteristics of the parallel SI- and SII-projecting neurons of the thalamic ventral posterior nucleus in the marmoset. J Neurophysiol 85(5):1805–1822

    Google Scholar 

  • Zhang HQ, Murray GM, Turman AB, Mackie PD, Coleman GT, Rowe MJ (1996) Parallel processing in cerebral cortex of the marmoset monkey: effect of reversible SI inactivation on tactile responses in SII. J Neurophysiol 76(6):3633–3655

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Wasaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wasaka, T., Kakigi, R. (2014). Sensorimotor Integration. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics