Skip to main content
Log in

An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is equivalent to the Frobenius integrability criterion. A theorem on the existence of a solution for the obtained type of integral equations is presented. The solution is found by the Euler polygonal method, which allows one to construct an approximate solution of the Pfaff equation. An analog of Nagumo’s theorem on the uniqueness of the solution to the Cauchy problem is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. É. Cartan, “Sur certaines expressions différentielles et le problème de Pfaff,” Ann. Sci. Éc. Norm. Supér. 16 (3), 239–332 (1899).

    Article  MATH  Google Scholar 

  2. C. K. Han, “Pfaffian systems of Frobenius type and solvability of generic overdetermined PDE systems,” in Symmetries and Overdetermined Systems of Partial Differential Equations, Ed. by. M. Eastwood and W. Miller (Springer, New York, 2008), Ser. The IMA Volumes in Mathematics and Its Applications, Vol. 144, pp. 421–429.

    Google Scholar 

  3. J. P. Jouanolou, Equations de Pfaff algébriques (Springer, Berlin, 1979), Ser. Lecture Notes in Mathematics, Vol. 708.

    MATH  Google Scholar 

  4. R. Howard, Methods of Thermodynamics (Blaisdell, New York, 1965).

    Google Scholar 

  5. C. Godbillon, Géométrie différentielle et mécanique analytique (Hermann, Paris, 2018; Mir, Moscow, 1973).

    MATH  Google Scholar 

  6. P. K. Rashevskii, Geometric Theory of Equations with Partial Derivatives (Gostekhizdat, Moscow, 1947) [in Russian].

    Google Scholar 

  7. B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge Univ. Press, Cambridge, 1980; Mir, Moscow, 1984).

    Book  MATH  Google Scholar 

  8. H. Cartan, Formes différentielles. Cours de Calcul Différentiel (Hermann, Hermann, 1967; Mir, Moscow, 1971).

    Google Scholar 

  9. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964; Mir, Moscow, 1970).

    MATH  Google Scholar 

  10. I. Tamura, Topology of Foliations (Mir, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  11. E. Bedford and M. Kalka, “Foliations and complex Monge–Ampere equations,” Comm. Pure Appl. Math. 30, 543–571 (1991). https://doi.org/10.1002/cpa.3160300503

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Luzatto, S. Türeli, and K. War, “A Frobenius theorem for corank-1 continuous distributions in dimensions two and three,” Int. J. Math. 27 (8), article no. 1650061 (2016). https://doi.org/10.1142/S0129167X16500610

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Popescu and M. Popescu, “Some aspects concerning the dynamics given by Pfaff forms,” Ann. Univ. Craiova, Ser. Phys. 21, 195–202 (2011).

    Google Scholar 

  14. H. A. Hakopian and M. G. Tonoyan, “Partial differential analogs of ordinary differential equations and systems,” New York J. Math. 10, 89–116 (2004).

    MATH  MathSciNet  Google Scholar 

  15. N. D. Vasilevich and T. N. Prokhorovich, “A linear Pfaff system of three equations on \(CP^{m}\),” Differ. Equ. 39 (6), 896–898 (2003). https://doi.org/10.1023/B:DIEQ.0000008417.90581.a4

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Brunella and L. Gustavo Mendes, “Bounding the degree of solutions to Pfaff equations,” Publ. Mat. 44 (2), 593–604 (2000). https://doi.org/10.5565/PUBLMAT_44200_10

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Cerveau and A. Lins-Neto, “Holomorphic foliations in \(CP(2)\) having an invariant algebraic curve,” Ann. Inst. Fourier 41 (5), 883–903 (1991). https://doi.org/10.5802/aif.1278

    Article  MATH  MathSciNet  Google Scholar 

  18. S. C. Coutinho, “A constructive proof of the density of algebraic Pfaff equations without algebraic solutions,” Ann. Inst. Fourier 57 (5), 1611–1621 (2007). https://doi.org/10.5802/aif.2308

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Źoladek, “On algebraic solutions of algebraic Pfaff equations,” Studia Math. 114 (2), 117–126 (1995). https://doi.org/10.4064/sm-114-2-117-126

    Article  MATH  MathSciNet  Google Scholar 

  20. N. A. Izobov, “On the existence of linear Pfaffian systems whose set of lower characteristic vectors has a positive plane measure,” Differ. Equ. 33 (12), 1626–1632 (1997).

    MATH  MathSciNet  Google Scholar 

  21. N. A. Izobov and A. S. Platonov, “Construction of a linear Pfaff equation with arbitrarily given characteristics and lower characteristic sets,” Differ. Equ. 34 (12), 1600–1607 (1998).

    MATH  MathSciNet  Google Scholar 

  22. N. V. Spichekova, “On the behavior of integral surfaces of a Pfaff equation with a nonclosed singular curve,” Differ. Equ. 41 (10), 1509–1513 (2005). https://doi.org/10.1007/s10625-005-0308-x

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Lefschetz, Differential Equations: Geometric Theory (Interscience, New York, 1957; Inostr. Lit., Moscow, 1961).

    MATH  Google Scholar 

  24. A. Azamov, S. Suvsanov, and A. Tilavov, “Studing of behavior at infinity of vector fields on Poincare s sphere: Revisited,” Qualit. Theor. Dyn. Syst. 15 (1), 211–220 (2016). https://doi.org/10.1007/s12346-015-0176-6

    Article  MATH  Google Scholar 

  25. V. Dryuma, “On geometrical properties of the spaces defined by the Pfaff equations,” Bul. Acad. Ştiinţe Repub. Mold., Ser. Mat. 47 (1), 69–84 (2005).

    MATH  MathSciNet  Google Scholar 

  26. P. Musen, On the Application of Pfaff’s Method in the Theory of Variation of Astronomical Constants, NASA Technical Note D-2301 (Goddard Space Flight Center, Greenbelt, MD, 1964).

    Google Scholar 

  27. S. Mardare, “On Pfaff systems with \(L^{p}\) coefficients in dimension two,” C. R. Math. 340 (12), 879–884 (2005). https://doi.org/10.1016/j.crma.2005.05.013

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Mardare, “On Pfaff systems with \(L^{p}\) coefficients and their applications in differential geometry,” J. Math. Pur. Appl. 84 (12), 1659–1692 (2005). https://doi.org/10.1016/j.matpur.2005.08.002

    Article  MATH  MathSciNet  Google Scholar 

  29. A. A. Azamov and A. O. Begaliyev, “Existence and uniqueness of the solution of a Cauchy problem for the Pfaff equation with continuous coefficients,” Uzb. Math. J., No. 2, 18–26 (2019). https://doi.org/10.29229/uzmj.2019-2-2

    Article  MathSciNet  Google Scholar 

  30. I. V. Gaishun, Completely Solvable Multidimensional Differential Equations (Editorial URSS, Moscow, 2004) [in Russian].

    Google Scholar 

  31. Y. T. Siu, Partial Differential Equations with Compatibility Condition. (2014) . https://www.coursehero.com/file/8864495/Lecture-notes-1/\,. https://www.coursehero.com/file/8864495/Lecture-notes-1/

  32. A. V. Arutyunov, Lectures on Convex and Multi-Valued Analysis (Fizmatlit, Moscow, 2014) [in Russian].

    Google Scholar 

  33. R. E. Edwards, Functional analysis: Theory and Applications (Holt, Rhinehart and Winston, New York, 1965).

    MATH  Google Scholar 

  34. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955; Inostr. Lit., Moscow, 1958).

    MATH  Google Scholar 

  35. J. Á. Cid, “On uniqueness criteria for systems of ordinary differential equations,” J. Math. Anal. Appl. 281 (1), 264–275 (2003). https://doi.org/10.1016/S0022-247X(03)00096-9

    Article  MATH  MathSciNet  Google Scholar 

  36. T. Mejstrik, “Some remarks on Nagumo’s theorem,” Czech. Math. J. 62 (1), 235–242 (2012). https://doi.org/10.1007/s10587-012-0008-7

    Article  MATH  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Innovative Development of the Republic of Uzbekistan (project no. OT-F4-84).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Azamov or A. O. Begaliev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 27, No. 3, pp. 12 - 24, 2021 https://doi.org/10.21538/0134-4889-2021-27-3-12-24.

Translated by I. Tselishcheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azamov, A.A., Begaliev, A.O. An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients. Proc. Steklov Inst. Math. 317 (Suppl 1), S16–S26 (2022). https://doi.org/10.1134/S0081543822030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543822030026

Keywords

Navigation