Skip to main content
Log in

Abstract McKean–Vlasov and Hamilton–Jacobi–Bellman Equations, Their Fractional Versions and Related Forward–Backward Systems on Riemannian Manifolds

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a class of abstract nonlinear fractional pseudo-differential equations in Banach spaces that includes both the McKean–Vlasov type equations describing nonlinear Markov processes and the Hamilton–Jacobi–Bellman–Isaacs equation of stochastic control and games. This allows for a unified analysis of these equations, which leads to an effective theory of coupled forward–backward systems (forward McKean–Vlasov evolution and backward Hamilton–Jacobi–Bellman–Isaacs evolution) that are central to the modern theory of mean-field games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. P. Agrawal, “Generalized variational problems and Euler–Lagrange equations,” Comput. Math. Appl. 59 (5), 1852–1864 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Applebaum and R. S. Brockway, “\(L_2\) properties of Lévy generators on compact Riemannian manifolds,” J. Theor. Probab. 34 (2), 1029–1042 (2021); arXiv: 1907.11123v2 [math.PR].

    Article  MATH  Google Scholar 

  3. T. Atanackovic, D. Dolicanin, S. Pilipovic, and B. Stankovic, “Cauchy problems for some classes of linear fractional differential equations,” Fract. Calc. Appl. Anal. 17 (4), 1039–1059 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. Averboukh, “Deterministic limit of mean field games associated with nonlinear Markov processes,” Appl. Math. Optim. 81 (3), 711–738 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Azagra, J. Ferrera, and F. López-Mesas, “Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds,” J. Funct. Anal. 220 (2), 304–361 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2nd ed. (World Scientific, Hackensack, NJ, 2017), Ser. Complex. Nonlinearity Chaos 5.

    MATH  Google Scholar 

  7. A. Bensoussan, J. Frehse, and Ph. Yam, Mean Field Games and Mean Field Type Control Theory (Springer, New York, 2013), Springer Briefs Math.

    Book  MATH  Google Scholar 

  8. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications. I: Mean Field FBSDEs, Control, and Games (Springer, Cham, 2018), Probab. Theory Stoch. Model. 83.

    Book  MATH  Google Scholar 

  9. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations (Springer, Cham, 2018), Probab. Theory Stoch. Model. 84.

    Book  MATH  Google Scholar 

  10. A. Cesaroni, M. Cirant, S. Dipierro, M. Novaga, and E. Valdinoci, “On stationary fractional mean field games,” J. Math. Pures Appl. 122, 1–22 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. B. Davies, “Pointwise bounds on the space and time derivatives of heat kernels,” J. Oper. Theory 21 (2), 367–378 (1989).

    MathSciNet  MATH  Google Scholar 

  12. T. E. Duncan and B. Pasik-Duncan, “Solvable stochastic differential games in rank one compact symmetric spaces,” Int. J. Control 91 (11), 2445–2450 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. A. Gomes, E. A. Pimentel, and V. Voskanyan, Regularity Theory for Mean-Field Game Systems (Springer, Cham, 2016), Springer Briefs Math.

    Book  MATH  Google Scholar 

  14. A. Grigor’yan, Heat Kernel and Analysis on Manifolds (Am. Math. Soc., Providence, RI, 2009), AMS/IP Stud. Adv. Math. 47.

    MATH  Google Scholar 

  15. Handbook of Fractional Calculus with Applications, Vol. 2: Fractional Differential Equations, Ed. by A. Kochubei and Yu. Luchko (De Gruyter, Berlin, 2019).

    Google Scholar 

  16. M. E. Hernández-Hernández and V. N. Kolokoltsov, “On the solution of two-sided fractional ordinary differential equations of Caputo type,” Fract. Calc. Appl. Anal. 19 (6), 1393–1413 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Huang, R. Malhamé, and P. E. Caines, “Large population stochastic dynamic games: Closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle,” Commun. Inf. Syst. 6 (3), 221–252 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Kiryakova, Generalized Fractional Calculus and Applications (Longman Scientific & Technical, Harlow, 1994), Pitman Res. Notes Math. Ser. 301.

    MATH  Google Scholar 

  19. A. N. Kochubei and Yu. Kondratiev, “Fractional kinetic hierarchies and intermittency,” Kinet. Relat. Models 10 (3), 725–740 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. V. N. Kolokoltsov, Semiclassical Analysis for Diffusions and Stochastic Processes (Springer, Berlin, 2000), Lect. Notes Math. 1724.

    MATH  Google Scholar 

  21. V. N. Kolokoltsov, “Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics,” Theory Probab. Appl. 53 (4), 594–609 (2009) [transl. from Teor. Veroyatn. Primen. 53 (4), 684–703 (2008)].

    Article  MathSciNet  MATH  Google Scholar 

  22. V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations (Cambridge Univ. Press, Cambridge, 2010), Cambridge Tracts Math. 182.

    Book  MATH  Google Scholar 

  23. V. N. Kolokoltsov, Markov Processes, Semigroups and Generators (De Gruyter, Berlin, 2011), De Gruyter Stud. Math. 38.

    MATH  Google Scholar 

  24. V. Kolokoltsov, “On fully mixed and multidimensional extensions of the Caputo and Riemann–Liouville derivatives, related Markov processes and fractional differential equations,” Fract. Calc. Appl. Anal. 18 (4), 1039–1073 (2015); arXiv: 1501.03925v1 [math.PR].

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Kolokoltsov, Differential Equations on Measures and Functional Spaces (Birkhäuser, Cham, 2019), Birkhäuser Adv. Texts. Basler Lehrbücher.

    Book  MATH  Google Scholar 

  26. V. N. Kolokoltsov, “Quantum mean-field games with the observations of counting type,” Games 12 (1), 7 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Kolokoltsov, F. Lin, and A. Mijatović, “Monte Carlo estimation of the solution of fractional partial differential equations,” Fract. Calc. Appl. Anal. 24 (1), 278–306 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  28. V. N. Kolokoltsov and O. A. Malafeyev, Many Agent Games in Socio-Economic Systems: Corruption, Inspection, Coalition Building, Network Growth, Security (Springer, Cham, 2019), Springer Ser. Oper. Res. Financ. Eng.

    Book  MATH  Google Scholar 

  29. V. N. Kolokoltsov and M. Troeva, “Regularity and sensitivity for McKean–Vlasov SPDEs,” AIP Conf. Proc. 1907, 030046 (2017).

    Article  Google Scholar 

  30. V. N. Kolokoltsov and M. S. Troeva, “Regularity and sensitivity for McKean–Vlasov type SPDEs generated by stable-like processes,” Probl. Anal. Issues Anal. 7 (2), 69–81 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  31. V. N. Kolokoltsov and M. Troeva, “On mean field games with common noise and McKean–Vlasov SPDEs,” Stoch. Anal. Appl. 37 (4), 522–549 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. N. Kolokoltsov and M. A. Veretennikova, “A fractional Hamilton Jacobi Bellman equation for scaled limits of controlled continuous time random walks,” Commun. Appl. Ind. Math. 6 (1), e-484 (2014).

    MathSciNet  MATH  Google Scholar 

  33. V. N. Kolokoltsov and M. A. Veretennikova, “Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations,” Fract. Differ. Calc. 4 (1), 1–30 (2014); arXiv: 1402.6735v1 [math.AP].

    MathSciNet  MATH  Google Scholar 

  34. V. Kolokoltsov and W. Yang, “Existence of solutions to path-dependent kinetic equations and related forward–backward systems,” Open J. Optim. 2 (2), 39–44 (2013).

    Article  Google Scholar 

  35. J.-M. Lasry and P.-L. Lions, “Jeux à champ moyen. I: Le cas stationnaire,” C. R., Math., Acad. Sci. Paris 343 (9), 619–625 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  36. N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii, “Correlation structure of fractional Pearson diffusions,” Comput. Math. Appl. 66 (5), 737–745 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Ludewig, “Strong short-time asymptotics and convolution approximation of the heat kernel,” Ann. Global Anal. Geom. 55 (2), 371–394 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Mantegazza and A. C. Mennucci, “Hamilton–Jacobi equations and distance functions on Riemannian manifolds,” Appl. Math. Optim. 47 (1), 1–25 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  39. D. T. Nguyen, S. L. Nguyen, and N. H. Du, “On mean field systems with multi-classes,” Discrete Contin. Dyn. Syst. 40 (2), 683–707 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  40. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, San Diego, CA, 1999), Math. Sci. Eng. 198.

    MATH  Google Scholar 

  41. A. V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order,” Sb. Math. 202 (4), 571–582 (2011) [transl. from Mat. Sb. 202 (4), 111–122 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  42. H. H. Schaefer, Banach Lattices and Positive Operators (Springer, Berlin, 1974), Grundl. Math. Wiss. 215.

    Book  MATH  Google Scholar 

  43. Q. Tang and F. Camilli, “Variational time-fractional mean field games,” Dyn. Games Appl. 10 (2), 573–588 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control (Elsevier, Amsterdam, 2016).

    MATH  Google Scholar 

  45. X. Zhu, “The optimal control related to Riemannian manifolds and the viscosity solutions to Hamilton–Jacobi–Bellman equations,” Syst. Control Lett. 69, 7–15 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for going through this article very carefully and providing them with a number of useful comments.

Funding

The work of V. N. Kolokoltsov (Sections 1–7) was supported by the Russian Science Foundation under grant no. 20-11-20119. The work of M. S. Troeva (Sections 8–10) was supported by the Ministry of Science and Higher Education of the Russian Federation (grant no. FSRG-2020-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kolokoltsov.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2021, Vol. 315, pp. 128–150 https://doi.org/10.4213/tm4235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolokoltsov, V.N., Troeva, M.S. Abstract McKean–Vlasov and Hamilton–Jacobi–Bellman Equations, Their Fractional Versions and Related Forward–Backward Systems on Riemannian Manifolds. Proc. Steklov Inst. Math. 315, 118–139 (2021). https://doi.org/10.1134/S0081543821050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821050096

Keywords

Navigation