Skip to main content
Log in

Deterministic Limit of Mean Field Games Associated with Nonlinear Markov Processes

  • Published:
Applied Mathematics & Optimization Aims and scope Submit manuscript

Abstract

The paper is concerned with the deterministic limit of mean field games with a nonlocal coupling. It is assumed that the dynamics of mean field games are given by nonlinear Markov processes. This type of games includes stochastic mean field games as well as mean field games with finite state space. We consider the limiting deterministic mean field game within the framework of minimax approach. The concept of minimax solutions is close to the probabilistic formulation. In this case the Hamilton–Jacobi equation is considered in the minimax/viscosity sense, whereas the flow of probabilities is determined by the probability on the set of solutions of the differential inclusion associated with the Hamilton–Jacobi equation such that those solutions are viable in the graph of the minimax solution. The main result of the paper is the convergence (up to subsequence) of the solutions of the mean field games to the minimax solution of a deterministic mean field game in the case when the underlying dynamics converge to the deterministic evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows: in metric spaces and in the space of probability measures. In: Lectures in Mathematics. ETH Zurich. Birkhäuser, Basel (2005)

  2. Averboukh, Y.V.: A minimax approach to mean field games. Math. Sb. 206, 3–32 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer Briefs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  4. Bensoussan, A., Frehse, J., Yam, S.: The master equation in mean field theory. J. Math. Pures Appl. 103, 1441–1474 (2014)

    Article  MathSciNet  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)

    Book  Google Scholar 

  6. Cardaliaguet, P.: In: Notes on mean-field games. Preprint (2013)

  7. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L.: The master equation and the convergence problem in mean field games. arXiv:1509.02505 (2015)

  8. Carmona, R., Delarue, F.: Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18, 15 (2013)

    Article  MathSciNet  Google Scholar 

  9. Carmona, R., Delarue, F.: Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51, 2705–2734 (2013)

    Article  MathSciNet  Google Scholar 

  10. Carmona, R., Delarue, F.: The master equation for large population equilibriums. In: Crisan, D., Hambly, B., Zariphopoulou, T. (eds.) Stochastic Analysis and Applications. Springer, New York (2014)

    MATH  Google Scholar 

  11. Carmona, R., Delarue, F., Lacker, D.: Mean field games with common noise. Ann. Probab. 44, 3740–3803 (2016)

    Article  MathSciNet  Google Scholar 

  12. Carmona, R., Lacker, D.: A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25, 1189–1231 (2015)

    Article  MathSciNet  Google Scholar 

  13. Fischer, M.: On the connection between symmetric n-player games and mean field games. Ann. Appl. Probab. 27, 757–810 (2017)

    Article  MathSciNet  Google Scholar 

  14. Fleming, W., Soner, H.: Controlled Markov processes and viscosity solutions. Springer, New York (2006)

    MATH  Google Scholar 

  15. Gomes, D., Mohr, J., Souza, R.R.: Continuous time finite state mean-field games. Appl. Math. Opt. 68, 99–143 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gomes, D., Saúde, J.: Mean field games models—a brief survey. Dyn. Games Appl. 4, 110–154 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gomes, D., Voskanyan, V.: Extended deterministic mean-field games. SIAM J. Control Optim. 54, 1030–1055 (2016)

    Article  MathSciNet  Google Scholar 

  18. Huang, M., Caines, P.E., Malhamé, R.P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized Nash equilibria. IEEE Trans. Autom. Control 52, 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  19. Huang, M., Caines, P.E., Malhamé, R.P.: The NCE (mean field) principle with locality dependent cost interactions. IEEE Trans. Autom. Control 55, 2799–2805 (2010)

    Article  MathSciNet  Google Scholar 

  20. Huang, M., Malhamé, R.P., Caines, P.E.: Nash equilibria for large population linear stochastic systems with weakly coupled agents. In: Boukas, E., Malhamé, R. (eds.) Analysis, Control and Optimization of Complex Dynamic Systems, pp. 215–252. Springer, New York (2005)

    Chapter  Google Scholar 

  21. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6, 221–251 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Kolokoltsov, V., Li, J.J., Yang, W.: Mean field games and nonlinear Markov processes. Preprint arXiv:1112.3744v2 (2011)

  23. Kolokoltsov, V., Yang, W.: Sensitivity analysis for HJB equations with an application to a coupled backward–forward system. arXiv:1303.6234 (2013)

  24. Kolokoltsov, V.N.: Nonlinear Markov process and kinetic equations. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  25. Kolokoltsov, V. N.: Markov processes, semigroups and generators, volume 38 of De Gruyter Studies in Mathematics. De Gryuter (2011)

  26. Kolokoltsov, V. N., Troeva, M.: On the mean field games with common noise and the McKean–Vlasov SPDEs. Preprint at arXiv:1506.04594 (2015)

  27. Kolokoltsov, V.N., Troeva, M., Yang, W.: On the rate of convergence for the mean-field approximation of controlled diffusions with large number of players. Dyn. Games Appl. 4, 208–230 (2014)

    Article  MathSciNet  Google Scholar 

  28. Lacker, D.: Mean field games via controlled martingale problems: existence of Markovian equilibria. Stoch. Process. Appl. 125, 2856–2894 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lacker, D.: A general characterization of the mean field limit for stochastic differential games. Probab. Theory Relat. Fields 165, 581–648 (2016)

    Article  MathSciNet  Google Scholar 

  30. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343, 619–625 (2006)

    Article  MathSciNet  Google Scholar 

  31. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen C. II. Horizon fini et contrôle optimal. R. Math. Acad. Sci. Paris 343, 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  32. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2, 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  33. Lions, P.-L.: College de France course on mean-field games. College de France (2007–2011)

  34. Subbotin, A.I.: Generalized Solutions of First-Order PDEs. The Dynamical Perspective. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  35. Sznitman, A.: Topics in propagation of chaos, volume 1464 of Lecture Notes in Mathematics, pp. 165–251. Springer, Berlin/Heidelberg (1991)

    Google Scholar 

  36. Villani, C.: Optimal Transport: Old and New. Springer, Berlin (2009)

    Book  Google Scholar 

  37. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York (1972)

    MATH  Google Scholar 

Download references

Acknowledgements

The author also would like to thank the anonymous referee for her/his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Averboukh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averboukh, Y. Deterministic Limit of Mean Field Games Associated with Nonlinear Markov Processes. Appl Math Optim 81, 711–738 (2020). https://doi.org/10.1007/s00245-018-9486-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9486-9

Keywords

Mathematics Subject Classification

Navigation