Skip to main content
Log in

Variational Time-Fractional Mean Field Games

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

We consider the variational structure of a time-fractional second-order mean field games (MFG) system. The MFG system consists of time-fractional Fokker–Planck and Hamilton–Jacobi–Bellman equations. In such a situation, the individual agent follows a non-Markovian dynamics given by a subdiffusion process. Hence, the results of this paper extend the theory of variational MFG to the subdiffusive situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen M, Caffarelli L, Vasseur A (2016) A parabolic problem with a fractional time derivative. Arch Ration Mech Anal 221(2):603–630

    Article  MathSciNet  MATH  Google Scholar 

  2. Benamou J-D, Brenier Y (2000) A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer Math 84(3):375–393

    Article  MathSciNet  MATH  Google Scholar 

  3. Benamou J.-D, Carlier G, Marino SD, Nenna L (2018) An entropy minimization approach to second-order variational mean-field games. arXiv:1807.09078

  4. Benamou J-D, Carlier G, Santambrogio F (2017) Variational mean field games. Springer, Cham, pp 141–171

    Google Scholar 

  5. Benzaquen M, Bouchaud J-P (2018) A fractional reaction-diffusion description of supply and demand. Eur Phys J B 91(2):23

    Article  Google Scholar 

  6. Bouchaud J-P, Georges A (1990) Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys Rep 195(4):127–293

    Article  MathSciNet  Google Scholar 

  7. Bouchaud J-P, Gefen Y, Potters M, Wyart M (2004) Fluctuations and response in financial markets: the subtle nature of ‘random’ price changes. Quant Finance 4(2):176–190

    Article  MATH  Google Scholar 

  8. Briani A, Cardaliaguet P (2018) Stable solutions in potential mean field game systems. Nonlinear Differ Equ Appl NoDEA 25(1):1

    Article  MathSciNet  MATH  Google Scholar 

  9. Camilli F, De Maio R (2019) A time-fractional mean field game. Adv Diff Equ 24(9–10):531–554

    MathSciNet  Google Scholar 

  10. Camilli F, De Maio R, Iacomini E (2019) A Hopf-Lax formula for Hamilton-Jacobi equations with Caputo time derivative. J Math Anal Appl 477(2):1019–1032

    Article  MathSciNet  MATH  Google Scholar 

  11. Camilli F, Goffi A (2019) Existence and regularity results for viscous Hamilton-Jacobi equations with Caputo time-fractional derivative. arXiv preprint arXiv:1906.01338

  12. Cardaliaguet P (2010) Notes on Mean Field Games from P.L. Lions’ lectures at Collége de France

  13. Cardaliaguet P (2015) Weak solutions for first order mean field games with local coupling. In: Bettiol P, Cannarsa P, Colombo G, Motta M, Rampazzo F (eds) Analysis and geometry in control theory and its applications. Springer INdAM Series, vol 11. Springer, Cham

  14. Cardaliaguet P, Graber PJ, Porretta A, Tonon D (2015) Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ Equ Appl NoDEA 22(5):1287–1317

    Article  MathSciNet  MATH  Google Scholar 

  15. Carmona R, Delarue F (2018) Probabilistic theory of mean field games with applications vol. 1 & 2. Springer, Cham

    Book  MATH  Google Scholar 

  16. Cesaroni A, Cirant M, Dipierro S, Novaga M, Valdinoci E On stationary fractional mean field games. Journal de Mathématiques Pures et Appliquées (to appear)

  17. Cirant M, Goffi A (2019) On the existence and uniqueness of solutions to time-dependent fractional mfg. SIAM J Math Anal 51(2):913–954

    Article  MathSciNet  MATH  Google Scholar 

  18. Giga Y, Namba T (2017) Well-posedness of Hamilton–Jacobi equations with Caputo’s time fractional derivative. Commun Partial Differ Equ 42(7):1088–1120

    Article  MathSciNet  MATH  Google Scholar 

  19. Gomes DA, Saúde J (2014) Mean field games models—a brief survey. Dyn Games Appl 4(2):110–154

    Article  MathSciNet  MATH  Google Scholar 

  20. Guéant O, Lasry JM, Lions PL (2011) Mean field games and applications. In: Paris-Princeton lectures on mathematical finance 2010. Lecture notes in Mathematics, vol 2003. Springer, Berlin, Heidelberg

  21. Hardy GH, Littlewood JE (1928) Some properties of fractional integrals i. Math Z 27(1):565–606

    Article  MathSciNet  MATH  Google Scholar 

  22. Henry BI, Langlands TAM, Straka P (2010) Fractional Fokker–Planck equations for subdiffusion with space- and time-dependent forces. Phys Rev Lett 105(17):170602

    Article  Google Scholar 

  23. Huang M, Caines PE, Malhame RP (2007) Large-population cost-coupled LQG problems with non uniform agents: individual-mass behaviour and decentralized \(\varepsilon \)-Nash equilibria. IEEE Trans Autom Control 52(9):1560–1571

    Article  MATH  Google Scholar 

  24. Kolokoltsov V, Veretennikova M (2014) A fractional Hamilton–Jacobi Bellman equation for scaled limits of controlled continuous time random walks. Commun Appl Ind Math 6(1):e484

    MathSciNet  MATH  Google Scholar 

  25. Lasry J-M, Lions P-L (2006) Jeux à champ moyen ii—horizon fini et contrôle optimal. Comptes Rendus Math 343(10):679–684

    Article  MathSciNet  MATH  Google Scholar 

  26. Lasry J-M, Lions P-L (2007) Mean field games. Jpn J Math 2(1):229–260

    Article  MathSciNet  MATH  Google Scholar 

  27. Ley O, Topp E, Yangari M (2019) Some results for the large time behavior of Hamilton–Jacobi equations with Caputo time derivative. arXiv preprint arXiv:1906.06625

  28. Li L, Liu J (2018) Some compactness criteria for weak solutions of time fractional PDEs. SIAM J Math Anal 50(4):3963–3995

    Article  MathSciNet  MATH  Google Scholar 

  29. Magdziarz M (2009) Stochastic representation of subdiffusion processes with time-dependent drift. Stoch Process Appl 119(10):3238–3252

    Article  MathSciNet  MATH  Google Scholar 

  30. Magdziarz M, Weron A, Weron K (2007) Fractional Fokker–Planck dynamics: stochastic representation and computer simulation. Phys Rev E 75(1):016708

    Article  MATH  Google Scholar 

  31. Magdziarz M, Gajda J, Zorawik T (2014) Comment on fractional Fokker–Planck equation with space and time dependent drift and diffusion. J Stat Phys 154(5):1241–1250

    Article  MathSciNet  MATH  Google Scholar 

  32. Marchaud A (1927) Sur les dérivées et sur les différences des fonctions de variables réelles. Journal de Mathématiques Pures et Appliquées 6:337–426

    MATH  Google Scholar 

  33. Mészáros AR, Silva FJ (2015) A variational approach to second order mean field games with density constraints: the stationary case. Journal de Mathématiques Pures et Appliquées 104(6):1135–1159

    Article  MathSciNet  MATH  Google Scholar 

  34. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  Google Scholar 

  35. Metzler R, Barkai E, Klafter J (1999) Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys Rev Lett 82:3563–3567

    Article  Google Scholar 

  36. Namba T (2018) On existence and uniqueness of viscosity solutions for second order fully nonlinear PDEs with Caputo time fractional derivatives. Nonlinear Differ Equ Appl NoDEA 25(3):23

    Article  MathSciNet  MATH  Google Scholar 

  37. Samko S, Kilbas A, Marichev O (1993) Fractional integrals and derivatives. Gordon and Breach, Yverdon

    MATH  Google Scholar 

  38. Scalas E, Gorenflo R, Mainardi F (2000) Fractional calculus and continuous-time finance. Phys A Stat Mech Appl 284(1):376–384

    Article  MathSciNet  Google Scholar 

  39. Topp E, Yangari M (2017) Existence and uniqueness for parabolic problems with Caputo time derivative. J Differ Equ 262(12):6018–6046

    Article  MathSciNet  MATH  Google Scholar 

  40. Weron A, Magdziarz M, Weron K (2008) Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker–Planck equation. Phys Rev E 77(3):036704

    Article  Google Scholar 

  41. Zacher R (2008) Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients. J Math Anal Appl 348(1):137–149

    Article  MathSciNet  MATH  Google Scholar 

  42. Zacher R (2013) A De Giorgi–Nash type theorem for time fractional diffusion equations. Math Ann 356(1):99–146

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the hospitality of Università di Roma “La Sapienza” during preparation of this work. Qing Tang is partially supported by China National Science Foundation Grant No. 11701534. Both authors thank Mirko D’Ovidio (Università di Roma “La Sapienza”) for helpful discussions about fractional calculus and subordinated processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Camilli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Q., Camilli, F. Variational Time-Fractional Mean Field Games. Dyn Games Appl 10, 573–588 (2020). https://doi.org/10.1007/s13235-019-00330-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-019-00330-2

Keywords

Navigation