Skip to main content

Multi-objective Optimization of Distillation Sequences Using a Genetic-Based Algorithm

  • Chapter
  • First Online:
Exergy for A Better Environment and Improved Sustainability 2

Part of the book series: Green Energy and Technology ((GREEN))

  • 1810 Accesses

Abstract

The distillation sequences of selected two-case hydrocarbon mixtures are determined in this study by an exergoeconomic multi-objective optimization using a genetic-based solver. A sole computer program (DISMO) is developed for achieving this aim including the database of thermophysical properties and genetic algorithm-based solver. The number of possible sharp distillation sequences increase markedly with the number of feed components and proper sequencing from maximum exergetic profit and minimum exergy destruction. Also, a parametric investigation is made for various weighing factors of objective functions for the sake of revealing the true characteristics of the system. The results of the illustrated cases show that the algorithm is applicable for the determination of the optimum alternative of the distillation sequences as the Pareto Solution Set and the optimum configuration is considered, and it is found that the maximum profit and minimum exergy destruction is 107,647 $/kW and 9302 kW, respectively, with a sequencing of 5-4-3-2-1 and 2-1-4-5-3 for a 6-component hydrocarbon mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcántara-Avila, J.R., Kano, M., Hasebe, S.: Multiobjective optimization for synthesizing compressor-aided distillation sequences with heat integration. Ind. Eng. Chem. Res. [Internet]. [cited 2015 Jan 12];51(17), 5911–5921 (2012) Available from: http://pubs.acs.org/doi/abs/10.1021/ie2017527

  • Amte, V., Nistala, S.H., Mahajani, S.M., Malik, R.K.: Optimization based conceptual design of reactive distillation for selectivity engineering. Comput. Chem. Eng. 48, 209–217 (2013)

    Article  Google Scholar 

  • Andrecovich, M.J., Westerberg, A.W.: An MILP formulation for heat-integrated distillation sequence synthesis. AIChE J [Internet]. Am. Inst. Chem. Engineers 31(9), 1461–1474 (1985) Available from: http://dx.doi.org/10.1002/aic.690310908

    Google Scholar 

  • Bauer, M.H., Stichlmair, J.: Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming. Comput. Chem. Eng. 22, 1271–1286 (1998)

    Article  Google Scholar 

  • Burri, J.F., Manousiouthakis, V.I.: Global optimization of reactive distillation networks using IDEAS. Comput. Chem. Eng. 28, 2509–2521 (2004)

    Article  Google Scholar 

  • Caballero, J.A., Grossmann, I.E.: Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput. Chem. Eng. 28, 2307–2329 (2004)

    Article  Google Scholar 

  • Cardoso, M.F., Salcedo, R.L., De Azevedo, S.F., Barbosa, D.: Optimization of reactive distillation processes with simulated annealing. Chem. Eng. Sci. 55, 5059–5078 (2000)

    Article  Google Scholar 

  • Chang, H., Wang, G.B., Chen, Y.H., Li, C.C., Chang, C.L.: Modeling and optimization of a solar driven membrane distillation desalination system. Renew. Energy. 35, 2714–2722 (2010)

    Article  Google Scholar 

  • Dincer, I., Rosen, M.A.: Exergy: Energy, Environment and Sustainable Development. Newnes, Elsevier (2012)

    Google Scholar 

  • Gadalla, M., Jobson, M., Smith, R.: Optimization of existing heat-integrated refinery distillation systems. Chem. Eng. Res. Des. IChemE. 81, 147–152 (2003)

    Article  Google Scholar 

  • Hanke, M., Li, P.: Simulated annealing for the optimization of batch distillation processes. Comput. Chem. Eng. 24, 1–8 (2000)

    Article  Google Scholar 

  • Jain, S., Smith, R., Kim, J.K.: Synthesis of heat-integrated distillation sequence systems. J. Taiwan Inst. Chem. Eng. 43, 525–534 (2012)

    Article  Google Scholar 

  • Mert, S.O., Özçelik, Z.: Multi-objective optimization of a direct methanol fuel cell system using a genetic-based algorithm. Int. J. Energy Res. [Internet]. [cited 2015 Jan 2] 37(10), 1256–1264 (2013). Available from: http://doi.wiley.com/10.1002/er.2963

  • Mert, S.O., Dincer, I., Ozcelik, Z.: Exergoeconomic analysis of a vehicular PEM fuel cell system. J. Power Sources [Internet]. [cited 2014 May 25] 165(1), 244–252 (2007a). Available from: http://www.sciencedirect.com/science/article/pii/S0378775306025171

  • Mert, S.O., Dincer, I., Ozcelik, Z.: Exergoeconomic analysis of a vehicular PEM fuel cell system. J. Power Sources. 165(1), 244–252 (2007b)

    Article  Google Scholar 

  • Mert, S.O., Dincer, I., Ozcelik, Z.: Performance investigation of a transportation PEM fuel cell system. Int. J. Hydrog. Energy. 37(1), 623–633 (2012)

    Article  Google Scholar 

  • Mert, S.O., Ozcelik, Z., Dincer, I.: Comparative assessment and optimization of fuel cells. Int. J. Hydrogen Energy [Internet]. (2014a.) [cited 2015 Jan 2]; Available from: http://www.sciencedirect.com/science/article/pii/S0360319914031280

  • Mert, S.O., Özçelik, Z., Dincer, I.: Exergoeconomic based multi–objective optimisation of a solid oxide fuel cell system. Int. J. Exergy. Inderscience Publishers. 14(4), 413–429 (2014b)

    Article  Google Scholar 

  • Modesto, M., Nebra, S.A.: Exergoeconomic analysis of the power generation system using blast furnace and coke oven gas in a Brazilian steel mill. Appl. Therm. Eng. Elsevier. 29(11), 2127–2136 (2009)

    Article  Google Scholar 

  • More, R.K., Bulasara, V.K., Uppaluri, R., Banjara, V.R.: Optimization of crude distillation system using aspen plus: effect of binary feed selection on grass-root design. Chem. Eng. Res. Des. 88, 121–134 (2010)

    Article  Google Scholar 

  • Özçelik, Y.: Exergetic optimization of shell and tube heat exchangers using a genetic based algorithm. Appl. Therm. Eng. [Internet]. [cited 2014 Jul 10] 27(11–12), 1849–1856 (2007). Available from: http://www.sciencedirect.com/science/article/pii/S1359431107000385

  • Özçelik, Y.: Exergetic optimization of distillation sequences using a genetic based algorithm. J. Therm. Sci. Technol. 31(1), 19–25 (2011). Turkish Soc Thermal Sciences Technology TIBTD Makina Muhendisligi Bolumu Odtu, Ankara, 06531, Turkey

    Google Scholar 

  • Pibouleau, L., Said, A., Domenech, S.: Synthesis of optimal and near-optimal distillation sequences by a bounding strategy. Chem. Eng. J. [Internet]. [cited 2015 Jan 13] 27(1), 9–19 1983. Available from: http://www.sciencedirect.com/science/article/pii/0300946783800410

  • Sayyaadi, H., Saffari, A.: Thermoeconomic optimization of multi effect distillation desalination systems. Appl. Energy. 87, 1122–1133 (2010)

    Article  Google Scholar 

  • Tsatsaronis, G., Moran, M.J.: Exergy-aided cost minimization. Energy Convers. Manag. Elsevier. 38(15), 1535–1542 (1997)

    Article  Google Scholar 

  • Tsatsaronis, G., Winhold, M.: Exergoeconomic analysis and evaluation of energy-conversion plants—II. Analysis of a coal-fired steam power plant. Energy. Elsevier. 10(1), 81–94 (1985)

    Google Scholar 

  • Wang, K., Qian, Y., Yuan, Y., Yao, P.: Synthesis and optimization of heat integrated distillation systems using an improved genetic algorithm. Comput. Chem. Eng. 23, 125–136 (1998)

    Article  Google Scholar 

  • Wang, X.H., Li, Y.G., Hu, Y.D., Wang, Y.L.: Synthesis of heat-integrated complex distillation systems via Genetic Programming. Comput. Chem. Eng. [Internet]. [cited 2015 Jan 12] 32(8), 1908–1917 (2008). Available from: http://linkinghub.elsevier.com/retrieve/pii/S009813540700261X

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mert Suha Orcun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orcun, M.S., Yavuz, Ö. (2018). Multi-objective Optimization of Distillation Sequences Using a Genetic-Based Algorithm. In: Aloui, F., Dincer, I. (eds) Exergy for A Better Environment and Improved Sustainability 2. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62575-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62575-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62574-4

  • Online ISBN: 978-3-319-62575-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics