Skip to main content
Log in

Synthesis and Compaction of Zirconium Nitride with Use of Zirconium Oxide and Air Supply

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A multitemperature model of conjugated heat transfer during the synthesis of zirconium nitride is developed. The model includes the following parameters: the temperature of the solid phase consisting of micrometer-sized particles of \({\text{Zr}}{{{\text{O}}}_{{\text{2}}}}\), \({\text{C}}\), and \(Z{\text{rN}}\); the temperature of the gas phase comprised of components CO, CO2, O2, and N2; the temperature of the reactor vessel made of porous graphite; and the temperature of the tungsten alloy layer, to the electrodes of which the potential difference is applied. The operation regimes with a multistage air flow at the reactor inlet for reducing the carbon impurity are studied. A decrease in the porosity by three orders of magnitude relative to the value at the initial point in time is demonstrated. The obtained results are in satisfactory agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Harrison, R.W. and Lee, W.E., Processing and properties of ZrC, ZrN and ZrCN ceramics, Adv. Appl. Ceram., 2016, vol. 115, no. 5, pp. 294–307. https://doi.org/10.1179/1743676115Y.0000000061

    Article  CAS  Google Scholar 

  2. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, no. 3, pp. 763–777.

    Article  CAS  Google Scholar 

  3. Shijiao Zhao, Jingtao Ma., Rui Xu, Xuping Lin, Xing Cheng, Shaochang Hao, Xingyu Zhao, Changsheng Deng, and Bing Liu, Synthesis and characterization of zirconium nitride nanopowders by internal gelation and carbothermic nitridation, Sci. Rep., 2019, vol. 9, p 19199. https://doi.org/10.1038/s41598-019-55450-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hulbert, D.M., Anders, A., Andersson, J., Lavernia, E.J., and Mukherjee, A.K., A discussion on the absence of plasma in spark plasma sintering, Scr. Mater., 2009, vol. 60, no. 10, pp. 835–838.

    Article  CAS  Google Scholar 

  5. Jackson, H.F. and Lee, W.E., Properties and characteristics of ZrC, in Comprehensive Nuclear Materials, Konings, R.J.M., Ed., Oxford: Elsevier, 2012, pp. 339–372.

    Google Scholar 

  6. Ditts, A.A., Oxynitride ceramic materials based on the products of combustion of industrial metal powders in air, Candidate’s (Eng.) Dissertation, Tomsk, 2006.

  7. Samsonov, G.V., Nitrides, Kiev: Naukova dumka, 1969.

    Google Scholar 

  8. Chemistry of Synthesis by Combustion, Koidzumi, Ed., Moscow: Mir, 1998.

  9. Merzhanov, A.G., Self-propagating high-temperature synthesis, in Physical Chemistry: Modern Problems: Yearbook, Kolotyrkin, Ya.M., Ed., Moscow: Khimiya, 1983.

    Google Scholar 

  10. Sychev, A.E., Self-propagating high-temperature synthesis of nanomaterials, Usp. Khim., 2004, vol. 2, pp. 157–170.

    Google Scholar 

  11. Ch’ng, H.N. and Pan, J., Cubic spline elements for modelling microstructural evolution of materials controlled by solid-state diffusion and grain-boundary migration, J. Comput. Phys., 2004, vol. 196, no. 2.

  12. Russias, J., Cardinal, S., Esnouf, C., Fantozzi, G., and Bienvenu, K., Hot pressed titanium nitride obtained from SHS starting powders: Influence of a pre-sintering heat-treatment of the starting powders on the densification process, J. Eur. Ceram. Soc., 2007, vol. 27, no. 1, pp. 327–335.

    Article  CAS  Google Scholar 

  13. Sakai, T. and Iwata, M., Effect of oxygen on sintering of AlN, J. Mater. Sci., 1977, vol. 12, no. 8, pp. 1659–1665.

    Article  CAS  Google Scholar 

  14. Adachi, J., Kurosaki, K., Uno, M., and Yamanaka, S., Thermal and electrical properties of zirconium nitride, J. Alloys Compd., 2005, vol. 399, no. 12, pp. 242–244.

    Article  CAS  Google Scholar 

  15. Merja, P., Masahide, T., and Tsuyoshi, N., Sintering and characterization of (Pu,Zr)N, J. Nucl. Mater., 2014, vol. 444, pp. 421–427.

    Article  Google Scholar 

  16. Harrison, R., Rapaud, O., Pradeilles, N., Maitre, A., and Lee, W.E., On the fabrication of ZrCxNy from ZrO2 via two-step carbothermic reduction–nitridation, J. Eur. Ceram. Soc., 2015, vol. 35, no. 5, pp. 1413–1421.

    Article  CAS  Google Scholar 

  17. Aigner, K., Lengauer, W., Rafaja, D., and Ettmayer, P., Lattice parameters and thermal expansion of Ti(CxNx), Zr(CxNx), Hf(CxN1–x) and TiNx from 298 to 1473 K as investigated by high-temperature X-ray diffraction, J. Alloys Compd., 1994, nos. 1–2, pp. 121–126.

  18. Harrison, R.W. and Lee, W.E., Processing and properties of ZrC, ZrN and ZrCN ceramics, Adv. Appl. Ceram., 2016, vol. 115, no. 5, pp. 294–307. https://doi.org/10.1179/1743676115Y.0000000061

    Article  CAS  Google Scholar 

  19. Lee, G., Yurlova, M.S., Giuntini, D., Grigoryev, E.G., Khasanov, O.L., McKittrick, J., and Olevsky, E.A., Densification of zirconium nitride by spark plasma sintering and high voltage electric discharge consolidation: A comparative analysis, Ceram. Int., 2015, vol. 41, no. 10, pp. 14973–14987.

    Article  CAS  Google Scholar 

  20. Martirosyan, K.S. and Luss, D., Carbon combustion synthesis of oxides process demonstration and features, AIChE J., 2005, vol. 51, no. 10, pp. 2801–2810.

    Article  CAS  Google Scholar 

  21. Markov, A.A., Hobossian, M.A., and Martirosyan, K.S., Investigation of the synthesis of ferrites behind the combustion wave using models of sliding and temperature jumps and concentrations of the components of the gas phase on the surface of the pores of the solid phase, Phys. Chem. Kinet. Gas Dyn., 2015, vol. 16, no. 1. http://chemphys.edu.ru/issues/2015-16-1/articles/506/

  22. Markov, A.A., Filimonov, I.A., and Martirosyan, K.S., Modeling of submicron complex oxides synthesis, Theor. Found. Chem. Eng., 2017, vol. 51, no. 1. p. 31. Markov, A.A., Filimonov, I.A., and Martirosyan, K.S., Carbon combustion synthesis of oxides: Effect of Mach, Peclet, and Reynolds numbers on gas dynamics, Int. J. Self-Propag. High-Temp. Synth., 2013, vol. 22, no. 1, pp. 11–17.

    Article  CAS  Google Scholar 

  23. Markov, A.A., Filimonov, I.A., and Martirosyan, K.S., Simulation of front motion in a reacting condensed two phase mixture, J. Comput. Phys., 2012, vol. 231, no. 20, pp. 6714–6724.

    Article  CAS  Google Scholar 

  24. Markov, A.A., On thermal and mass dispersion effect on barium titanate synthesis via CCSO, Phys. Chem. Kinet. Gas Dyn., 2019, vol. 20, no. 4. http://chemphys.edu.ru/issues/2019-20-4/articles/870/

  25. Markov, A.A., On fine particles synthesis using three-zone reactor, J. Phys.: Conf. Ser., 2020, vol. 1611, Article 012047. https://doi.org/10.1088/1742-6596/1611/1/012047

    Article  CAS  Google Scholar 

  26. Berre, I., Doster, F., and Keilegavlen, E., Flow in fractured porous media: A review of conceptual models and discretization approaches, Transp. Porous Media, 2019, vol. 130, pp. 215–236.

    Article  Google Scholar 

  27. Whitaker, S., Transport equations for multi-phase systems, Chem. Eng. Sci., 1973, vol. 28, pp. 139– 147.

    Article  CAS  Google Scholar 

  28. Hsu, C.T. and Cheng, P., Thermal dispersion in a porous medium, Int. J. Heat Mass Transfer, 1990, vol. 33, no. 8, pp. 1587–1597.

    Article  CAS  Google Scholar 

  29. Fatehi, M. and Kaviany, M., Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion, Int. J. Heat Mass Transfer, 1997, vol. 40, no. 11, pp. 2607–2620.

    Article  CAS  Google Scholar 

  30. Oliveira, A.A.M. and Kaviany, M., Nonequilibrium in the transport of heat and reactants in combustion in porous media, Prog. Energy Combust. Sci., 2001, vol. 27, pp. 523– 45.

    Article  CAS  Google Scholar 

  31. Pereira, F.M., Oliveira, A.A.M., and Fachini, F.F., Theoretical analysis of ultra-lean premixed flames in porous inert media, J. Fluid Mech., 2010, vol. 657, pp. 285–307.

    Article  CAS  Google Scholar 

  32. Delgado, J.M.P.Q., Longitudinal and transverse dispersion in porous media, Chem. Eng. Res. Des., 2007, vol. 85, no. 9, pp. 1245–1252.

    Article  CAS  Google Scholar 

  33. Betelin, V.B., Galkin, V.A., Shpilman, A.V., and Smirnov, N.N., Digital core simulator—A promising method for developing hard-to-recover oil reserves technology, Mater. Phys. Mech., 2020, vol. 44, pp. 186–209.

    CAS  Google Scholar 

  34. Sorokova, S.N. and Knyazeva, A.G., Coupled model of sintering of powders in the Ti–TiAI3 system, Izv. Tomsk. Politekh. Inst., 2009, vol. 314, no. 2, p. 96.

    Google Scholar 

  35. Knyazeva, A.G., Introduction to Thermodynamics of Irreversible Processes, Tomsk: Ivan Fedorov, 2014.

    Google Scholar 

  36. Markov, A., Modeling the synthesis of barium titanate micron particles in axisymmetric direct-flow and three-zone reactors, J. Eng. Phys. Thermophys., 2021, vol. 94, pp. 1312–1325.

    Article  CAS  Google Scholar 

  37. Markov, A.A., Thermal and concentration expansion in the synthesis of barium titanate in a once-through reactor, Theor. Found. Chem. Eng., 2021, vol. 55, no. 5, pp. 929–941.

    Article  CAS  Google Scholar 

  38. Markov A.A. Multitemperature model of a sps reactor for the synthesis and densification of zirconium nitride, Phys. Chem. Kinet. Gas Dyn., 2021, vol. 22, no. 6. http://chemphys.edu.ru/issues/2021-22-6/articles/962/

  39. Lee, G., Olevsky, E.A., Maniere, C., Maximenko, A., Izhvanov, O., Back, C., and McKittrick, J., Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering, Acta Mater., 2017. https://doi.org/10.1016/j.actamat.2017.11.010

  40. Olevsky, E., Timmermans, G., Shtern, M., Froyen, L., and Delaey, L., The permeable element method for modeling of deformation processes in porous and powder materials: Theoretical basis and checking by experiments, Powder Technol., 1997, vol. 93, no. 2, pp. 123–141.

    Article  Google Scholar 

  41. Olevsky, E.A., Theory of sintering: from discrete to continuum, Mater. Sci. Eng., R, 1998, vol. 23, no. 2, pp. 41–100.

    Article  Google Scholar 

  42. Olevsky, E., Tikare, V., and Garino, T., Multi-scale modeling of sintering: Review, J. Am. Ceram. Soc., 2006, vol. 89, no. 6, pp. 1914–1922.

    Article  CAS  Google Scholar 

  43. Markov, A.A., Jump–slip simulation technique for combustion in submicron tubes and submicron pores, Comput. Fluids, 2014, vol. 99C, pp. 83–92.

    Article  Google Scholar 

  44. Xie, Z., Fu, Y., Wang, S., Lee, W., and Niihara, K., Synthesis of nanosized zirconium carbide powders by a combinational method of sol–gel and pulse current heating, J. Eur. Ceram. Soc., 2014, vol. 34, no. 1, pp. 13e1–13e7.

  45. Bardelle, Ph. and Warin, D., Mechanism and kinetics of the uranium–plutonium mononitride synthesis, J. Nucl. Mater., 1992, vol. 188. https://doi.org/10.1016/0022-3115(92)90451-p

  46. Aigner, K., Lengauer, W., Rafaja, D., and Ettmayer, P., Lattice parameters and thermal expansion of Ti(CxNx), Zr(CxNx), Hf(CxN1–x) and TiNx from 298 to 1473 K as investigated by high-temperature X-ray diffraction, J. Alloys Compd., 1994, vol. 215, nos. 1–2, pp. 121–126.

    Article  CAS  Google Scholar 

  47. Ortega, A., Alcala, M.D., and Real, C., Carbothermal synthesis of silicon nitride (Si3N4): Kinetics and diffusion mechanism, J. Mater. Process. Technol., 2008, vol. 195, no. 13, pp. 224– 231.

    Article  CAS  Google Scholar 

  48. Weimer, A.W., Eisman, G.A., Susnitzky, D.W., Beaman, D.R., and McCoy, J.W., Mechanism and kinetics of the carbothermal nitridation synthesis of alpha-silicon nitride, J. Am. Ceram. Soc., 1997, vol. 80, no. 11, pp. 2853–2863.

    Article  CAS  Google Scholar 

  49. Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses, New York: Wiley, 1960.

    Google Scholar 

  50. Conrad, H., Electroplasticity in metals and ceramics, Mat. Sci. Eng. A, 2000, vol. 287, no. 2, pp. 276–287.

    Article  Google Scholar 

  51. Olevsky, E., Tikare, V., and Garino, T., Multi-scale modeling of sintering: Review, J. Am. Ceram. Soc., 2006, vol. 89, no. 6, pp. 1914–1922.

    Article  CAS  Google Scholar 

  52. Frank-Kamenetskii, D.A., Diffusion and Heat Transfer in Chemical Kinetics, Moscow: Nauka.

  53. Markov, A.A. and Filimonov, I.A., Model of thermal radiation using heat absorption by CO2 in submicron pores with application to magnesium-zinc ferrite fine disperse particles synthesis via combustion, J. Phys.: Conf. Ser., 2018, vol. 1009, Article 012040. https://doi.org/10.1088/1742-6596/1009/1/012040

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed within the framework of accomplishing State assignment under State registration no. AAAA–A20–120011690135–5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Markov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A.A. Synthesis and Compaction of Zirconium Nitride with Use of Zirconium Oxide and Air Supply. Theor Found Chem Eng 56, 768–782 (2022). https://doi.org/10.1134/S0040579522050293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522050293

Keywords:

Navigation