Skip to main content
Log in

Modeling the Synthesis of Barium Titanate Micron Particles in Axisymmetric Direct-Flow and Three-Zone Reactors

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

An Author Correction to this article was published on 01 January 2022

This article has been updated

A study is made of heat- and mass-transfer regime in a porous medium consisting of gas and solid reactants and products of synthesis of micron particles during the motion of a combustion front in cylindrical channels with account of thermal and mass dispersions. A model of a three-zone reactor is proposed, and a comparative analysis is made of the influence of dispersion on the process of operation of flow and three-zone reactors. Modeling results for different geometric parameters of the synthesis reactors are compared. A comparison is made of the results of calculating the synthesis of barium titanate and calculating for the model without thermal dispersion. Advantages of the three-zone reactor are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. A. G. Merzhanov and A. S. Mukas′yan, Solid-Flame Combustion [in Russian], Torus Press, Moscow

  2. K. S. Martirosyan and D. Luss, Carbon combustion synthesis of oxides process demonstration and features, AIChE J., 51, No.10, 2801−2810 (2005).

  3. K. Chen, K. S. Martirosyan, and D. Luss, Hot zones formation during regeneration of diesel particulate fi lters, AIChE J., 57, No. 2, 497−506 (2011).

    Article  Google Scholar 

  4. S. Whitaker, Transport equations for multi-phase systems, Chem. Eng. Sci., 28, 139−147 (1973).

    Article  Google Scholar 

  5. C. T. Hsu and P. Cheng, Thermal dispersion in a porous medium, Int. J. Heat Mass Transf., 33, 1587–1597 (1990).

    Article  Google Scholar 

  6. M. Quintard and S. Whitaker, Theoretical Analysis of Transport in Porous Media, Marcel Dekker, New York (2000).

    Book  Google Scholar 

  7. M. Fatehi and M. Kaviany, Role of gas-phase reaction and gas–solid thermal nonequilibrium in reverse combustion, Int. J. Heat Mass Transf., 11, 2607−2620 (1997).

    Article  Google Scholar 

  8. F. M. Pereira, A. A. M. Oliveira, and F. F. Fachini, Theoretical analysis of ultra-lean premixed fl ames in porous inert media, J. Fluid Mech., 657, 285–307 (2010).

    Article  MathSciNet  Google Scholar 

  9. Fatehi and M. Kaviany, Adiabatic reverse combustion in a packed bed, Combust. Flame, 99, Issue 1, 1–7 (1994).

  10. J. M. P. Q. Delgado, Longitudinal and transverse dispersion in porous media, Chem. Eng. Res. Des., 85, 1245–1252 (2007).

    Article  Google Scholar 

  11. A. A. Markov, On the infl uence of thermal and mass dispersion on the synthesis of barium-titanate micron particles, Vestn. PNIPU, Khim. Tekhnol. Biotekhnol., No. 2, 160−177 (2020); DOI: 10.15593/2224-9400/.

  12. E. A. Salganskii, E. V. Polianchik, and G. B. Manelis, Modeling the combustion of carbon in a fi ltration regime, Khim. Fiz., 25, No. 10, 83−91 (2006).

    Google Scholar 

  13. V. V. Martynenko, R. Echigo, and H. Yoshida, Mathematical model of self-sustaining combustion in inert porous medium with phase change under complex heat transfer, Int. J. Heat Mass Transf., 41, No. l, 117−126 (1998).

    Article  Google Scholar 

  14. K. V. Dobrego and S. A. Zhdanok, Engineering calculation of the characteristics of a fi ltration-combustion wave based on a one-dimensional two-temperature model, J. Eng. Phys. Thermophys., 71, No. 3, 420−424 (1998).

    Article  Google Scholar 

  15. C. W. Wahle, B. J. Matkowsky, and A. P. Aldushin, Effects of gas-solid nonequilibrium in fi ltration combustion, Combust. Sci. Technol., 175, 1389−1499 (2003).

    Article  Google Scholar 

  16. A. A. Markov, Jump–slip simulation technique for combustion in submicron tubes and submicron pores, Comput. Fluids, 99C, 83−92 (2014).

    Article  MathSciNet  Google Scholar 

  17. A. A. Markov, I. A. Filimonov, and K. S. Martirosyan, Carbon combustion synthesis of oxides: Effect of Mach, Peclet, and Reynolds numbers on gas dynamics, Int. J. Self Propag. High Temp. Synth., 22, No. 1, 11–17 (2013).

    Article  Google Scholar 

  18. A. A. Markov, M. A. Obosyan, and K. S. Martirosyan, Investigation into the synthesis of ferrites behind a combustion wave with models of slip and jumps of the temperature and concentrations of the gas-phase components on the pore surface of the solid phase, Fiz.-Khim. Kinet. Gaz. Dinam., 16, Issue 1 (2015); http://chemphys.edu.ru/issues/2015-16-1/articles/506/.

  19. A. A. Markov, I. A. Filimonov, and K. S. Martirosyan, Modeling the synthesis of composite oxides of submicron dispersity, Teor. Osn. Khim. Tekhnol., 51, No. 1, 31–42 (2017).

    Google Scholar 

  20. E. Brzozowski, J. Sanchez, and M. S. Castrol, BaCO3–TiO2 solid state reaction: A kinetic study, J. Mater. Synth. Process., 10, No. 1, 123−129 (2002).

    Article  Google Scholar 

  21. A. Beauger, J. C. Mutin, and J. C. Niepce, Synthesis reaction of metatitanate BaTiO3. Part 1. Effect of the gaseous atmosphere upon the thermal evolution of the system BaCO3−TiO2, J. Mater. Sci., 18, 3041−3046 (1983).

  22. Y. C. Chen and D. Luss, Wrong-way behavior of packed-bed reactors: Infl uence of interphase transport, AIChE J., 35, 1148–1156 (1989).

    Article  Google Scholar 

  23. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], 3rd revised and enlarged edn., Nauka, Moscow (1987).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 94, No. 5, pp. 1343–1357, September–October, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, A.V. Modeling the Synthesis of Barium Titanate Micron Particles in Axisymmetric Direct-Flow and Three-Zone Reactors. J Eng Phys Thermophy 94, 1312–1325 (2021). https://doi.org/10.1007/s10891-021-02412-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-021-02412-8

Keywords

Navigation