Skip to main content
Log in

Artin Billiard: Exponential Decay of Correlation Functions

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The hyperbolic Anosov C-systems have an exponential instability of their trajectories and as such represent the most natural chaotic dynamical systems. The C-systems defined on compact surfaces of the Lobachevsky plane of constant negative curvature are especially interesting. An example of such a system was introduced in a brilliant article published in 1924 by the mathematician Emil Artin. The dynamical system is defined on the fundamental region of the Lobachevsky plane, which is obtained by identifying points congruent with respect to the modular group, the discrete subgroup of the Lobachevsky plane isometries. The fundamental region in this case is a hyperbolic triangle. The geodesic trajectories of the non-Euclidean billiard are bounded to propagate on the fundamental hyperbolic triangle. Here, we present Artin’s results, calculate the correlation functions/observables defined on the phase space of the Artin billiard, and show that the correlation functions decay exponentially with time. We use the Artin symbolic dynamics, differential geometry, and the group theory methods of Gelfand and Fomin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Artin, “Ein mechanisches System mit quasiergodischen Bahnen,” Abh. Math. Sem. Univ. Hamburg, 3, 170–175 (1924).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Hadamard, “Les surfacesá courbures opposées et leur linges géodésiques,” J. Math. Pures Appl., 4, 27–73 (1898).

    MATH  Google Scholar 

  3. G. A. Hedlund, “The dynamics of geodesic flow,” Bull. Amer. Math. Soc., 45, 241–246 (1939).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. V. Anosov, “Geodesic flows on closed Riemannian manifolds of negative curvature,” Proc. Steklov Inst. Math., 90, 1–235 (1967).

    MathSciNet  Google Scholar 

  5. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lect. Notes Math., Vol. 470), Springer, Berlin (1975).

    Book  MATH  Google Scholar 

  6. A. N. Kolmogorov, “A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces,” Proc. Steklov Inst. Math., 169, 97–102 (1986).

    MATH  Google Scholar 

  7. A. N. Kolmogorov, “Entropy per unit time as a metric invariant of automorphisms,” Dokl. Akad. Nauk SSSR, 124, 754–755 (1959).

    MathSciNet  MATH  Google Scholar 

  8. Ya. G. Sinai, “On the concept of entropy for a dynamic system [in Russian],” Dokl. Akad. Nauk SSSR, 124, 768–771 (1959).

    MathSciNet  MATH  Google Scholar 

  9. D. Ruelle, Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics, Addison-Wesley, Reading, Mass. (1978).

    MATH  Google Scholar 

  10. E. Hopf, “Ergodic theory and the geodesic flow on surfaces of constant negative curvature,” Bull. Amer. Math. Soc., 77, 863–877 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. M. Gel’fand and S. V. Fomin, “Geodesic flows on manifolds of constant negative curvature,” Russ. Math. Surveys, 7, 118–137 (1952).

    MathSciNet  Google Scholar 

  12. P. Collet, H. Epstein, and G. Gallavotti, “Perturbations of geodesic flows on surface of constant negative curvature and their mixing properties,” Commun. Math. Phys., 95, 61–112 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C. C. Moore, “Exponential decay of correlation coefficients for geodesic flows,” in: Group Representations, Ergodic Theory, Operator Algebras, and Mathematical Physics (Math. Sci. Res. Inst. Publ., Vol. 6, C. C. Moore, ed.), Springer, New York (1987), pp. 163–181.

    Chapter  Google Scholar 

  14. N. S. Krylov, Works on the Foundation of Statistical Physics [in Russian], Acad. Sci. USSR Press, Moscow (1950); English transl., Princeton Univ. Press, Princeton, N. J. (1979).

    Google Scholar 

  15. E. Hopf, “Statistik der Lösungen geodätischer Probleme vom unstabilen Typus: II,” Math. Ann., 117, 590–608 (1940).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Dolgopyat, “On decay of correlations in Anosov flows,” Ann. of Math. (2), 147, 357–390 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. I. Chernov, “Markov approximations and decay of correlations for Anosov flows,” Ann. Math. (2), 147, 269–324 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  18. G. K. Savvidy, “The Yang–Mills classical mechanics as a Kolmogorov K-system,” Phys. Lett. B, 130, 303–307 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  19. G. K. Savvidy, “Classical and quantum mechanics of non-abelian gauge fields,” Nucl. Phys. B, 246, 302–334 (1984).

    Article  ADS  Google Scholar 

  20. G. K. Savvidy and N. G. Ter-Arutyunyan-Savvidy, “On the Monte Carlo simulation of physical systems,” J. Comput. Phys., 97, 566–572 (1991).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. K. G. Savvidy, “The MIXMAX random number generator,” Comput. Phys. Commun., 196, 161–165 (2015).

    Article  ADS  MATH  Google Scholar 

  22. G. K. Savvidy, “Anosov C-systems and random number generators,” Theor. Math. Phys., 188, 1155–1171 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. K. G. Savvidy and G. K. Savvidy, “Spectrum and entropy of C-systems MIXMAX random number generator,” Chaos Solitons Fractals, 91, 33–38 (2016); arXiv:1510.06274v3 [math.DS] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP, 1608, 106 (2016); arXiv: 1503.01409v1 [hep-th] (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. H. Poincaré, “Théorie des groupes fuchsiens,” Acta Math., 1, 1–62 (1882).

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Fuchs, “Über eine Klasse von Funktionen mehrerer Variablen, welche durch Umkehrung der Integrale von Lösungen der linearen Differentialgleichungen mit rationalen Coeffizienten entstehen,” J. Reine Angew. Math., 89, 151–169 (1880).

    MathSciNet  Google Scholar 

  27. C. Burstin, “Über eine spezielle Klasse reeller periodischer Funktionen,” Monatsh. Math. Phys., 26, 229–262 (1915).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig (1910).

    MATH  Google Scholar 

  29. H. Poincaré, “Mémoire sur les fonctions fuchsiennes,” Acta Math., 1, 193–294 (1882).

    Article  MathSciNet  MATH  Google Scholar 

  30. L. R. Ford, An Introduction to the Theory of Automorphic Functions, G. Bell and Sons, London (1915).

    MATH  Google Scholar 

  31. M. Pollicott, “On the rate of mixing of Axiom A flows,” Invent. Math., 81, 413–426 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. G. K. Savvidy and K. G. Savvidy, “Exponential decay of correlations functions in MIXMAX generator of pseudorandom numbers,” Chaos Solitons Fractals, 107, 244–250 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Savvidy.

Additional information

This research was supported by the European Union’s Horizon 2020 research and innovation program (Marie Skíodowska-Curie grant agreement No. 644121).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 197, No. 2, pp. 230–251, November, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poghosyan, H.R., Babujian, H.M. & Savvidy, G.K. Artin Billiard: Exponential Decay of Correlation Functions. Theor Math Phys 197, 1592–1610 (2018). https://doi.org/10.1134/S004057791811003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057791811003X

Keywords

Navigation