Skip to main content
Log in

Holographic thermalization from Kerr-AdS

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study thermalization of a strongly coupled theory holographically dual to a thin shell of null dust with non-zero angular momentum collapsing to Kerr-AdS. We calculate thermalization time for two point correlation functions. It happens that in the 3-dimensional case the thermalization time is just proportional to the distance between points where the correlator is evaluated. This is a very surprising and rather unexpected generalization of the same relation in the case of zero momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  2. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  4. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  5. S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].

    ADS  Google Scholar 

  6. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].

    Article  Google Scholar 

  9. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling heavy ion collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Lin and E. Shuryak, Grazing collisions of gravitational shock waves and entropy production in heavy ion collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].

    ADS  Google Scholar 

  11. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric collision of two shock waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. I.Y. Aref’eva, A. Bagrov and E. Guseva, Critical formation of trapped surfaces in the collision of non-expanding gravitational shock waves in de Sitter space-time, JHEP 12 (2009) 009 [arXiv:0905.1087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  14. I.Y. Aref’eva, A. Bagrov and L. Joukovskaya, Critical trapped surfaces formation in the collision of ultrarelativistic charges in (A)dS, JHEP 03 (2010) 002 [arXiv:0909.1294] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Y.V. Kovchegov and S. Lin, Toward thermalization in heavy ion collisions at strong coupling, JHEP 03 (2010) 057 [arXiv:0911.4707] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Y.V. Kovchegov, Shock wave collisions and thermalization in AdS 5, Prog. Theor. Phys. Suppl. 187 (2011) 96 [arXiv:1011.0711] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. E. Kiritsis and A. Taliotis, Multiplicities from black-hole formation in heavy-ion collisions, JHEP 04 (2012) 065 [arXiv:1111.1931] [INSPIRE].

    Article  ADS  Google Scholar 

  18. I. Arefeva, A. Bagrov and E. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Taliotis, Extra dimensions, black holes and fireballs at the LHC, JHEP 05 (2013) 034 [arXiv:1212.0528] [INSPIRE].

    Article  ADS  Google Scholar 

  20. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Spherically collapsing matter in AdS, holography and shellons, Nucl. Phys. B 563 (1999) 279 [hep-th/9905227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].

  23. V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  25. J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].

    Article  ADS  Google Scholar 

  28. E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Ali-Akbari and H. Ebrahim, Thermalization in external magnetic field, JHEP 03 (2013) 045 [arXiv:1211.1637] [INSPIRE].

    Article  ADS  Google Scholar 

  30. I.Y. Arefeva and I. Volovich, On holographic thermalization and dethermalization of quark-gluon plasma, arXiv:1211.6041 [INSPIRE].

  31. V. Balasubramanian et al., Thermalization of the spectral function in strongly coupled two dimensional conformal field theories, JHEP 04 (2013) 069 [arXiv:1212.6066] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [INSPIRE].

    ADS  Google Scholar 

  33. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. S.R. Das, T. Nishioka and T. Takayanagi, Probe branes, time-dependent couplings and thermalization in AdS/CFT, JHEP 07 (2010) 071 [arXiv:1005.3348] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. K. Hashimoto, N. Iizuka and T. Oka, Rapid thermalization by baryon injection in gauge/gravity duality, Phys. Rev. D 84 (2011) 066005 [arXiv:1012.4463] [INSPIRE].

    ADS  Google Scholar 

  37. I. Aref’eva, Holography for quark-gluon plasma formation in heavy ion collisions, PoS(ICMP2012)025 [INSPIRE].

  38. O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, arXiv:1304.7794 [INSPIRE].

  39. V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].

    ADS  Google Scholar 

  40. V. Keranen and L. Thorlacius, Thermal correlators in holographic models with Lifshitz scaling, Class. Quant. Grav. 29 (2012) 194009 [arXiv:1204.0360] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  42. J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. D. Garfinkle and L.A. Pando Zayas, Rapid thermalization in field theory from gravitational collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].

    ADS  Google Scholar 

  44. D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On field theory thermalization from gravitational collapse, JHEP 02 (2012) 119 [arXiv:1110.5823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. B. Wu, On holographic thermalization and gravitational collapse of massless scalar fields, JHEP 10 (2012) 133 [arXiv:1208.1393] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

    ADS  Google Scholar 

  48. X.-G. Wen, Topological order: from long-range entangled quantum matter to an unification of light and electrons, arXiv:1210.1281 [INSPIRE].

  49. S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, arXiv:1304.4926 [INSPIRE].

  51. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  53. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. V.E. Hubeny, M. Rangamani and E. Tonni, Thermalization of causal holographic information, JHEP 05 (2013) 136 [arXiv:1302.0853] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey S. Koshelev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aref’eva, I., Bagrov, A. & Koshelev, A.S. Holographic thermalization from Kerr-AdS. J. High Energ. Phys. 2013, 170 (2013). https://doi.org/10.1007/JHEP07(2013)170

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)170

Keywords

Navigation