Skip to main content
Log in

Gravitational instability in the dust layer of a protoplanetary disk: Interaction of solid particles with turbulent gas in the layer

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Gravitational instability of the dust layer formed after the aggregates of dust particles settle toward the midplane of a protoplanetary disk under turbulence is considered. A linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation is solved. Turbulent diffusion and the velocity dispersion of solid particles and the perturbation of gas azimuthal velocity in the layer upon the transfer of angular momentum from the dust phase due to gas drag are taken into account. Such an interaction of the particles and the gas establishes upper and lower bounds on the perturbation wavelength that renders the instability possible. The dispersion equation for the layer in the case when the ratio of surface densities of the dust phase and the gas in the layer is well above unity is obtained and solved. An approximate gravitational instability criterion, which takes the size-dependent stopping time of a particle (aggregate) in the gas into account, is derived. The following parameters of the layer instability are calculated: the wavelength range of its subsistence and the dependence of the perturbation growth rate on the perturbation wavelength in the circumsolar disk at a radial distance of 1 and 10 AU. It is demonstrated that at a distance of 1 AU, the gas–dust disk should be enriched with solids by a factor of 5–10 relative to the initial abundance as well as the particle aggregates should grow to the sizes higher than about 0.3 m in order for the instability to emerge in the layer in the available turbulence models. Such high disk enrichment and aggregate growth is not needed at a distance of 10 AU. The conditions under which this gravitational instability in the layer may be examined with no allowance made for the transfer of angular momentum from the gas in the layer to the gas in a protoplanetary disk outside the layer are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, X.-N. and Stone, J., Dynamics of solids in the midplane of protoplanetary disks: implications for planetesimal formation, Astrophys. J., 2010, vol. 722, pp. 1437–1459.

    Article  ADS  Google Scholar 

  • Coradini, A., Federico, C., and Magni, C., Formation of planetesimals in an evolving protoplanetery disk, Astron. Astrophys., 1981, vol. 98, pp. 173–185.

    ADS  MATH  Google Scholar 

  • Cuzzi, J.N., Dobrovolskis, A.R., and Champney, J.M., Particle-gas dynamics in the midplane of a protoplanetary nebula, Icarus, 1993, vol. 106, pp. 102–134.

    Article  ADS  Google Scholar 

  • Dobrovolskis, A.R., Dacles-Mariani, J.S., and Cuzzi, J.N., Production and damping of turbulence by particles in the solar nebula, J. Geophys. Res., 1999, vol. 104, no. E12, pp. 30805–30815.

    Article  ADS  Google Scholar 

  • Dubrulle, B., Morfill, G., and Sterzik, M., The dust subdisk in the protoplanetary nebula, Icarus, 1995, vol. 114, pp. 237–246.

    Article  ADS  Google Scholar 

  • Genkin, I.L. and Safronov, V.S., Nonstability of rotating gravitating systems with radial disturbances, Astron. Zh., 1975, vol. 52, no. 2, pp. 306–315.

    ADS  Google Scholar 

  • Goldreich, P. and Ward, W.R., The formation of planetesimals, Astrophys. J., 1973, vol. 183, pp. 1051–1061.

    Article  ADS  Google Scholar 

  • Goodman, J. and Pindor, B., Secular instability and planetesimal formation in the dust layer, Icarus, 2000, vol. 148, pp. 537–549.

    Article  ADS  Google Scholar 

  • Gor’kavyi, N.N. and Fridman, A.M., Fizika planetnykh kolets: nebesnaya mekhanika sploshnoi sredy (Physics of Planetary Rings: Celestial Mechanics of Continuous Media), Moscow: Nauka, 1994.

    Google Scholar 

  • Johansen, A., Youdin, A.N., and Lithwick, Y., Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities, Astron. Astrophys., 2012, vol. 537, p. A125.

    Article  ADS  Google Scholar 

  • Johansen, A., Blum, J., Tanaka, H., Ormel, C., Bizzarro, M., and Rickman, H., The multifaceted planetesimal formation process, in Protostars and Planets VI, Beuther, H., Klessen, R.S., Dullemond, C.P., and Henning, T., Eds., Tucson: Univ. Arizona Press, 2014, pp. 547–570.

    Google Scholar 

  • Kolesnichenko, A.V., Modeling of the turbulent transport coefficients in a gas-dust accretion disk, Solar Syst. Res., 2000, vol. 34, no. 6, pp. 469–480.

    Article  ADS  Google Scholar 

  • Kolesnichenko, A.V. and Marov, M.Ya., Fundamentals of the mechanics of heterogeneous media in the circumsolar protoplanetary cloud: the effects of solid particles on disk turbulence, Solar Syst. Res., 2006, vol. 40, no. 1, pp. 1–56.

    Article  ADS  Google Scholar 

  • Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1986.

    Google Scholar 

  • Lodders, K., Solar system abundances and condensation temperatures of the elements, Astropys. J., 2003, vol. 591, pp. 1220–1247.

    Article  ADS  Google Scholar 

  • Lynden-Bell, D. and Pringle, J.E., The evolution of viscous discs and the origin of the nebular variables, Mon. Notic. Roy. Astron. Soc., 1974, vol. 168, pp. 603–637.

    Article  ADS  Google Scholar 

  • Makalkin, A.B. and Ziglina I.N., Formation of planetesimals in the trans-Neptunian region of the protoplanetary disk, Solar Syst. Res., 2004, vol. 38, no. 4, pp. 288–299.

    Article  ADS  Google Scholar 

  • Makalkin, A.B. and Dorofeeva, V.A., Temperature distribution in the solar nebula at successive stages of its evolution, Solar Syst. Res., 2009, vol. 43, no. 6, pp. 508–532.

    Article  ADS  Google Scholar 

  • Marov, M.Ya., Kolesnichenko, A.V., Makalkin, A.B., Dorofeeva, V.A., Ziglina, I.N., and Chernov, A.V., From protosolar cloud to the planetary system: evolution model of gas-dust disk, in Problemy zarozhdeniya i evolyutsii biosfery (Problems of Biosphere Origin and Evolution), Galimov, E.M., Ed., Moscow: Knizhnyi dom “LIBROKOM”/URSS, 2008, pp. 223–274.

    Google Scholar 

  • Monin, A.S. and Yaglom, A.M., Statisticheskaya gidromekhanika (Statistical Hydromechanics), Moscow: Nauka, 1965, part 1.

    Google Scholar 

  • Nakagawa, Y., Sekiya, M., and Hayashi, C., Settling and growth of dust particles in a laminar phase of a lowmass solar nebula, Icarus, 1986, vol. 67, pp. 375–390.

    Article  ADS  Google Scholar 

  • Safronov, V.S., Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets, Jerusalem: Keter, 1972.

    Google Scholar 

  • Safronov, V.S., Evolution of the dusty component of the circumsolar protoplanetary disk, Solar Syst. Res., 1987, vol. 21, no. 3, pp. 135–138.

    Google Scholar 

  • Safronov, V.S., Kuiper prize lecture: some problems in the formation of the planets, Icarus, 1991, vol. 94, pp. 260–271.

    Article  ADS  Google Scholar 

  • Shakura, N.I. and Sunyaev, R.A., Black holes in binary systems. Observational appearance, Astron. Astrophys., 1973, vol. 24, pp. 337–353.

    ADS  Google Scholar 

  • Shakura, N.I., Sunyaev, R.A., and Zilitinkevich, S.S., On the turbulent energy transport in accretion disks, Astron. Astrophys., 1978, vol. 62, pp. 179–187.

    ADS  Google Scholar 

  • Shariff, K. and Cuzzi, J., Gravitational instability of solids assisted by gas drag: slowing by turbulent mass diffusivity, Astropys. J., 2011, vol. 738, no. 1, id. 73.

    Article  ADS  Google Scholar 

  • Shu, F.H., Waves in planetary rings, in Planetary Rings, Greenberg, R. and Brahic, A., Eds., Tucson: Univ. Arizona Press, 1984, pp. 513–561.

    Google Scholar 

  • Takahashi, S.Z. and Inutsuka, S., Two-component secular gravitational instability in a protoplanetary disk: a possible mechanism for creating ring-like structures, Astrophys. J., 2014, vol. 794, no. 1, id. 55.

    Article  ADS  Google Scholar 

  • Toomre, A., On the gravitational stability of a disk of stars, Astrophys. J., 1964, vol. 139, pp. 1217–1238.

    Article  ADS  Google Scholar 

  • Völk, H., Jones, F., Morfill, G., and Röser, S., Collisions between grains in a turbulent gas, Astron. Astrophys., 1980, vol. 87, pp. 316–325.

    MathSciNet  Google Scholar 

  • Weidenschilling, S.J., Aerodynamics of solid bodies in the solar nebula, Mon. Notic. Roy. Astron. Soc., 1977, vol. 180, pp. 57–70.

    Article  ADS  Google Scholar 

  • Weidenschilling, S.J., Evolution of grains in a turbulent solar nebula, Icarus, 1984, vol. 60, pp. 555–567.

    Article  ADS  Google Scholar 

  • Youdin, A.N. and Chiang, E.I., Particle pileups and planetesimal formation, Astrophys. J., 2004, vol. 601, pp. 1109–1119.

    Article  ADS  Google Scholar 

  • Youdin, A.N. and Goodman, J., Streaming instabilities in protoplanetary disks, Astrophys. J., 2005, vol. 620, pp. 459–469.

    Article  ADS  Google Scholar 

  • Youdin, A.N. and Lithwick, Y., Particle stirring in turbulent gas disks: including orbital oscillations, Icarus, 2007, vol. 192, pp. 588–604.

    Article  ADS  Google Scholar 

  • Youdin, A.N., On the formation of planetesimals via secular gravitational instabilities with turbulent stirring, Astrophys. J., 2011, vol. 711, id. 99.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Makalkin.

Additional information

Original Russian Text © I.N. Ziglina, A.B. Makalkin, 2016, published in Astronomicheskii Vestnik, 2016, Vol. 50, No. 6, pp. 431–449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziglina, I.N., Makalkin, A.B. Gravitational instability in the dust layer of a protoplanetary disk: Interaction of solid particles with turbulent gas in the layer. Sol Syst Res 50, 408–425 (2016). https://doi.org/10.1134/S0038094616060071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094616060071

Keywords

Navigation