Skip to main content
Log in

Hydrogen-dominated upper atmosphere of an exoplanet: Heating by stellar radiation from soft X-rays to extreme ultraviolet

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A study is presented of how the upper atmosphere of a planet is heated by extreme radiation from the parent star, depending on the distribution of the radiation flux in the soft X-ray and extreme ultraviolet (EUV) ranges. Calculations are performed to find the efficiency of heating by stellar X-ray to EUV radiation in a hydrogen-dominated upper atmosphere for the extrasolar gas giant HD 209458b. It is shown that heating efficiency by extreme stellar UV radiation in a hydrogen-dominated upper atmosphere does not exceed 20–25% at the main thermospheric heights given that the calculation takes into account the photoelectron impact. It is found that an increase in the X-ray flux by several orders of magnitude leads to a slight decrease in the heating efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baraffe, I., Selsis, F., Chabrier, G., Barman, T.S., Allard, F., Hauschildt, P.H., and Lammer, H., The effect of evap-oration on the evolution of close-in giant planets, Astron. Astrophys., 2004, vol. 419, pp. L13–L16.

    Article  ADS  Google Scholar 

  • Bisikalo, D., Kaygorodov, P., Ionov, D., Shematovich, V., Lammer, H., and Fossati, L., 3D gas dynamic simula-tion of the interaction between the exoplanet WASP-12b and its host star, Astrophys. J., 2013a, vol. 764, p. 19.

    Article  ADS  Google Scholar 

  • Bisikalo, D.V., Kaigorodov, P.V., Ionov, D.E., and Shema-tovich, V.I., Types of gaseous envelopes of “hot Jupiter” exoplanets, Astron. Rep., 2013b, vol. 90, p. 715.

    Article  ADS  Google Scholar 

  • Chassefière, E., Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus, J. Geo-phys. Res., 1996, vol. 101, pp. 26039–26056.

    Article  ADS  Google Scholar 

  • Davis, T.A. and Wheatley, P.J., Evidence for a lost popula-tion of close-in exoplanets, Mon. Notic. Roy. Astron. Soc., 2009, vol. 396, pp. 1012–1017.

    Article  ADS  Google Scholar 

  • Ehrenreich, D. and Dèsert, J.-M., Mass-loss rates for tran-siting exoplanets, Astron. Astrophys., 2011, vol. 529, p. A136.

    Article  ADS  Google Scholar 

  • Erkaev, N.V., Lammer, H., Odert, P., Kulikov, Yu.N., Kisly-akova, K.G., Khodachenko, M.L., Güdel, M., Hanslmeier, A., and Biernat, H., XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terres-trial planets. Pt. I: Atmospheric expansion and thermal escape, Astrobiology, 2013, vol. 13, pp. 1011–1029.

    Article  ADS  Google Scholar 

  • Garvey, R.H. and Green, A.E.S., Energy-apportionment techniques based upon detailed atomic cross sections, Phys. Rev. A, 1976, vol. 14, pp. 946–953.

    Article  ADS  Google Scholar 

  • Garvey, R.H., Porter, H.S., and Green, A.E.S., An analytic degradation spectrum for H2, J. Appl. Phys., 1977, vol. 48, pp. 190–193.

    Article  ADS  Google Scholar 

  • Hubbard, W.B., Hattori, M.F., Burrows, A., and Hubeny, I., A mass function constraint on extrasolar giant planet evaporation rates, Astrophys. J., 2007a, vol. 658, pp. L59–L62.

    Article  ADS  Google Scholar 

  • Hubbard, W.B., Hattori, M.F., Burrows, A., Hubeny, I., and Sudarsky, D., Effects of mass loss for highly-irradi-ated giant planets, Icarus, 2007b, vol. 187, pp. 358–364.

    Article  ADS  Google Scholar 

  • Huebner, W.F., Keady, J.J., and Lyon, S.P., Solar photorates for planetary atmospheres and atmospheric pollutants, Astrophys. Space Sci., 1992, vol. 195, pp. 1–294.

    Article  ADS  Google Scholar 

  • Ionov, D.E., Bisikalo, D.V., Shematovich, V.I., and Hubert, B., Ionization fraction in the thermosphere of the exoplanet HD209458b, Solar Syst. Res., 2014, vol. 48, no. 2, pp. 105–112.

    Article  ADS  Google Scholar 

  • Jackman, C.H., Garvey, R.H., and Green, A.E.S., Electron impact on atmospheric gases. I–updated cross sec-tions, J. Geophys. Res., 1977, vol. 82, pp. 5081–5090.

    Article  ADS  Google Scholar 

  • Jackson, B., Miller, N., Barnes, R., Raymond, S.N., Fort-ney, J.J., and Greenberg, R., The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b, Mon. Notic. Roy. Astron. Soc., 2010, vol. 407, pp. 910–922.

    Article  ADS  Google Scholar 

  • Jackson, A.P., Davis, T.A., and Wheatley, P.J., The coronal X-ray-age relation and its implications for the evapora-tion of exoplanets, Mon. Notic. Roy. Astron. Soc., 2012, vol. 422, pp. 2024–2043.

    Article  ADS  Google Scholar 

  • Kawahara, H., Hirano, T., Kurosaki, K., Ito, Y., and Ikoma, M., Starspots-transit depth relation of the evap-orating planet candidate KIC 12557548b, Astrophys. J., 2013, vol. 776, p. L6.

    Article  ADS  Google Scholar 

  • Kislyakova, K.G., Lammer, H., Holmstrom, M., Panchenko, M., Odert, P., Erkaev, N.V., Leitzinger, M., Khodachenko, M.L., Kulikov, Yu.N., Güdel, M., and Hanslmeier, A., XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Pt. II: Hydrogen coronae and ion escape, Astrobiology, 2013, vol. 13, pp. 1030–1048.

    Article  ADS  Google Scholar 

  • Koskinen, T.T., Harris, M.J., Yelle, R., and Lavvas, P., The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical-dynamical model of the thermosphere, Icarus, 2013, vol. 226, pp. 1678–1694.

    Article  ADS  Google Scholar 

  • Ksanfomaliti, L.V., On the nature of the object HD209458b: conclusions drawn from comparison of experimental and theoretical data, Solar Syst. Res., 2004a, vol. 38, no. 4, pp. 300–308.

    Article  ADS  Google Scholar 

  • Ksanfomality, L.V., Regularity of extrasolar planetary sys-tems and the role of the star metallicity in the formation of planets (review), Solar Syst. Res., 2004b, vol. 38, no. 5, pp. 372–382.

    Article  ADS  Google Scholar 

  • Kurokawa, H. and Kaltenegger, L., Atmospheric mass-loss and evolution of short-period exoplanets: the examples of CoRoT-7b and Kepler-10b, Mon. Notic. Roy. Astron. Soc., 2013, vol. 433, pp. 3239–3245.

    Article  ADS  Google Scholar 

  • Lammer, H., Selsis, F., Ribas, I., Guinan, E.F., Bauer, S.J., and Weiss, W.W., Atmospheric loss of exoplanets result-ing from stellar X-ray and extreme-ultraviolet heating, Astrophys. J., 2003, vol. 598, pp. L121–L126.

    Article  ADS  Google Scholar 

  • Lammer, H., Odert, P., Leitzinger, M., Khodachenko, M.L., Panchenko, M., Kulikov, Yu.N., Zhang, T.L., Licht-enegger, H.I.M., Erkaev, N.V., Wuchterl, G., Micela, G., Penz, T., Biernat, H.K., Weingrill, J., Steller, M., Ottacher, H., Hasiba, J., and Hanslmeier, A., Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations?, Astron. Astrophys., 2009, vol. 506, pp. 399–410.

    Article  ADS  Google Scholar 

  • Lammer, H., Erkaev, N.V., Odert, P., Kislyakova, K.G., Leitzinger, M., and Khodachenko, M.L., Probing the blow-off criteria of hydrogen-rich ‘super-Earths’, Mon. Notic. Roy. Astron. Soc., 2013, vol. 430, pp. 1247–1256.

    Article  ADS  Google Scholar 

  • Lecavelier des Etangs, A., Vidal-Madjar, A., McConnell, J.C., and Hébrard, G., Atmospheric escape from hot Jupi-ters, Astron. Astrophys., 2004, vol. 418, pp. L1–L4.

    Article  ADS  Google Scholar 

  • Lecavelier des Etangs, A., A diagram to determine the evap-oration status of extrasolar planets, Astron. Astrophys., 2007, vol. 461, pp. 1185–1193.

    Article  ADS  Google Scholar 

  • Leitzinger, M., Odert, P., Kulikov, Yu.N., Lammer, H., Wuchterl, G., Penz, T., Guarcello, M.G., Micela, G., Khodachenko, M.L., Weingrill, J., Hanslmeier, A., Biernat, H.K., and Schneider, J., Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?, Planet. Space Sci., 2011, vol. 59, pp. 1472–1481.

    Article  ADS  Google Scholar 

  • Linsky, J.L. and Güdel, M., Exoplanet host star radiation and plasma environment, in Characterizing Stellar and Exoplanetary eEnvironments, Lammer, H. and Kho-dachenko, M., Eds., Springer, Astrophys. and Space Sci. Lib., 2015, vol. 411, pp.105–136.

    Google Scholar 

  • Lissauer, J.J., Fabrycky, D.C., Ford, E.B., and 36 coau-thors, A closely packed system of low-mass, low-den-sity planets transiting Kepler-11, Nature, 2011, vol. 470, pp. 53–58.

    Article  ADS  Google Scholar 

  • Lopez, E.D., Fortney, J.J., and Miller, N., How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond, Astrophys. J., 2012, vol. 761, p. id. 59.

    Article  ADS  Google Scholar 

  • Lopez, E.D. and Fortney, J.J., The role of core mass in con-trolling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy, Astrophys. J., 2013, vol. 776, p. id. 2.

    Article  ADS  Google Scholar 

  • Marov, M.Ya., Shematovich, V.I., and Bisikalo, D.V., Non-equilibrium processes in the planetary and cometary atmospheres. A kinetic approach to modeling, Space Sci. Rev., 1996, vol. 76, pp. 1–200.

    Article  ADS  Google Scholar 

  • Murray-Clay, R.A., Chiang, E.I., and Murray, N., Atmo-spheric escape from hot Jupiters, Astrophys. J., 2009, vol. 693, pp. 23–42.

    Article  ADS  Google Scholar 

  • Penz, T., Erkaev, N.V., Kulikov, Yu.N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Bier-nat, H.K., Selsis, F., Barge, P., Deleuil, M., and Léger, A., Mass loss from “hot Jupiters”—implications for CoRoT discoveries. Pt. II: Long time thermal atmo-spheric evaporation modeling, Planet. Space Sci., 2008, vol. 56, pp. 1260–1272.

    Article  ADS  Google Scholar 

  • Sanz-Forcada, J., Ribas, I., Micela, G., Pollock, A.M.T., García-Álvarez, D., Solano, E., and Eiroa, C., A sce-nario of planet erosion by coronal radiation, Astron. Astrophys., 2010, vol. 511, p. id. L8.

    Article  ADS  Google Scholar 

  • Sanz-Forcada, J., Micela, G., Ribas, I., Pollock, A.M.T., Eiroa, C., Velasco, A., Solano, E., and García-Álvarez, D., Estimation of the xuv radiation onto close planets and their evaporation, Astron. Astrophys., 2011, vol. 532, p. id. A6.

    Article  ADS  Google Scholar 

  • Shaikhislamov, I.F., Khodachenko, M.L., Sasunov, Yu.L., Lammer, H., Kislyakova, K.G., and Erkaev, N.V., Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material, Astrophys. J., 2014, vol. 795, p. id. 132.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Bisikalo, D.V., Gérard, J.-C., Cox, C., Bougher, S.W., and Leblanc, F., Monte Carlo model of electron transport for the calculation of Mars dayglow emissions, J. Geophys. Res., 2008, vol. 113, p. E02011.

    ADS  Google Scholar 

  • Shematovich, V.I., Supratermal hydrogen produced by the disassociation of molecular hedrogen in the extended atmosphere of exoplanet HD209458b, Solar Syst. Res., 2010, vol. 44, no. 2, pp. 96–103.

    Article  ADS  Google Scholar 

  • Shematovich, V.I., Ionov, D.E., and Lammer, H., Heating efficiency in hydrogen-dominated upper atmospheres, Astron. Astrophys., 2014, vol. 571, p. id. A94.

    Article  ADS  Google Scholar 

  • Valencia, D., Guillot, T., Parmentier, V., and Freedman, R.S., Bulk composition of GJ1214b and other sub-neptune exoplanets, Astrophys. J., 2013, vol. 775, p. id. 10.

    Article  ADS  Google Scholar 

  • Vidal-Madjar, A., Lecavelier des Etangs, A., Desert, J.-M., Ballester, G.E., Ferlet, R., Hé brard, G., and Mayor, M., An extended upper atmosphere around the extrasolar planet HD209458b, Nature, 2003, vol. 422, pp. 143–146.

    Article  ADS  Google Scholar 

  • Watson, A.J., Donahue, T.M., and Walker, J.C.G., The dynamics of a rapidly escaping atmosphere–applica-tions to the evolution of Earth and Venus, Icarus, 1981, vol. 48, pp. 15–31.

    Article  Google Scholar 

  • Wu, Y. and Lithwick, Y., Density and eccentricity of Kepler planets, Astrophys. J., 2013, vol. 772, p. id. 74.

    Article  ADS  Google Scholar 

  • Yelle, R., Aeronomy of extra-solar giant planets at small orbital distances, Icarus, 2004, vol. 170, pp. 167–179.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shematovich.

Additional information

Original Russian Text © D.E. Ionov, V.I. Shematovich, 2015, published in Astronomicheskii Vestnik, 2015, Vol. 49, No. 5, pp. 373–379.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionov, D.E., Shematovich, V.I. Hydrogen-dominated upper atmosphere of an exoplanet: Heating by stellar radiation from soft X-rays to extreme ultraviolet. Sol Syst Res 49, 339–345 (2015). https://doi.org/10.1134/S0038094615050056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094615050056

Keywords

Navigation