Skip to main content
Log in

Strength and Tribotechnical Characteristics of an Epoxy Compound–WSe2 Composite Material

  • APPLIED PROBLEMS OF STRENGTH AND PLASTICITY
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The hardness, strength, and tribotechnical characteristics of a hard-lubricating composite material based on modified K-153A epoxy resin filled with WSe2 particles in an amount of up to 70 wt % are investigated. The compound modified by ~20 wt % WSe2 has the best set of properties: the hardness is ≈79 HRC (on scale L), the compressive strength is ≈155 MPa, the compressive yield strength is ≈90 MPa, the wear intensity under dry sliding friction is ≈0.18 × 10–8 mm3/(N m), and the coefficient of friction is ≈0.2. The material can be recommended for rotaprint application onto the flanges of rolling stock wheels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. P. Markov, Tribology and Its Application in Railway Transport. 170 Years of Russian Railways. Transactions of VNIIZhT (Intekst, Moscow, 2007).

  2. T. N. Bokovikova, E. R. Shperber, and D. R. Shperber, “Development of technology for producing rail lubrication,” Neftepererabotka Neftekhim. Nauch.-Tekh. Dostizh. Peredovoi Opyt, No. 9, 25–27 (2010).

    Google Scholar 

  3. V. I. Kolesnikov, S. F. Ermakov, A. P. Sychev, N. A. Myasnikova, M. A. Savenkova, and E. I. Luneva, “Improvement of the tribotechnical and physicochemical properties of Puma lubricating compositions with lithium phosphorolybdate additive,” Trenie Iznos 30 (3), 254–260 (2009).

    CAS  Google Scholar 

  4. T. A. Lobova, M. V. Lobanov, I. P. Chulkov, and O. A. Sayapin, “New lubricating compositions with additives of molybdenum and tungsten diselenide powders,” Vestn. Mashiostr., No. 7, 40–44 (2004).

  5. V. A. Kokhanovsky and D. V. Glazunov, “A lubricant for rotaprint lubrication of the wheel–rail system,” J. Friction Wear 41 (6), 531–537 (2020).

    Article  Google Scholar 

  6. G. I. Troyanovskaya, “Use of self-lubricating materials in the rotaprint lubrication method,” Vestn. Mashiostr., No. 4, 51–55 (1974).

  7. E. A. Aleksandrova, “Model optimization of the triboparameters of heavily loaded sliding supports,” Izv. Samarsk. Nauch. Tsentra RAN 13 (3–4), 652–655 (2011).

  8. D. V. Glazunov, “Visualization of the rotaprint method of lubricating the flanges of rolling stock wheels,” Zheleznodor. Transport, No. 7, 70–72 (2018).

    Google Scholar 

  9. V. V. Shapovalov, I. A. Maiba, R. M. Murtazaaliev, and R. A. Kornienko, “Import-substituting noise suppression technology at sorting complexes,” Izv. Vyssh. Uchebn. Zaved., Severo-Kavkaz. Region. Tekh. Nauki, No. 1 (186), 63–70 (2016).

    Google Scholar 

  10. V. V. Shapovalov, P. N. Shcherbak, V. M. Bogdanov, E. E. Feizov, P. V. Kharlamov, and V. A. Feizova, “Improving the efficiency of the wheel–rail friction system,” Vestn. Nauch.-Issled. Inst. Zheleznodor. Transporta 78 (3), 177–182 (2019).

    Google Scholar 

  11. J. K. Lancaster, “Lubrication by transferred films of solid lubricants,” ASLE Trans. 8 (2), 146–153 (1965).

    Article  Google Scholar 

  12. K. H. Kannur, T. B. Yaqub, T. Huminiuc, T. Polcar, C. Pupier, C. Héau, and A. Cavaleiro, “Synthesis and structural properties of Mo–S–N sputtered coatings,” Appl. Surf. Sci. 527, 146790 (2020).

    Article  Google Scholar 

  13. W. D. Sun, J. Wang, K. W. Wang, J. J. Pan, R. Wang, M. Wen, and K. Zhang, “Turbulence-like Cu/MoS2 films: structure, mechanical and tribological properties,” Surf. Coat. Technol. 422, 127490 (2021).

  14. A. D. Breki, A. L. Didenko, V. V. Kudryavtsev, E. S. Vasil’eva, O. V. Tolochko, A. E. Gvozdev, N. N. Sergeev, D. A. Provotorov, N. E. Starikov, Yu. A. Fadin, and A. G. Kolmakov, “Composite coatings based on A-OOO polyimide and WS2 nanoparticles with increased tribotechnical characteristics under dry sliding friction conditions,” Materialoved., No. 5, 41–44 (2016).

  15. A. D. Breki, A. L. Didenko, V. V. Kudryavtsev, E. S. Vasil’eva, O. V. Tolochko, A. E. Gvozdev, A. G. Kolmakov, D. A. Provotorov, N. E. Starikov, and Yu. A. Fadin, “Synthesis and tribotechnical properties of a composite coating with a polyimide (R-LLC)FT matrix and a filler made of tungsten disulfide nanoparticles under dry sliding friction,” Materialoved., No. 4, 44–48 (2016).

  16. M. H. Rahman, E. H. Chowdhury, and S. Hong, “High temperature oxidation of monolayer MoS2 and its effect on mechanical properties: a ReaxFF molecular dynamics study,” Surf. Interf. 26, 101371 (2021).

  17. M. Stella, C.D. Lorenz, and M. Clelia Righi, “Effects of intercalated water on the lubricity of sliding layers under load: a theoretical investigation on MoS2,” 2D Mater. 8 (3), 035052 (2021).

  18. N. M. Renevier, N. Lobiondo, V. C. Fox, D. G. Teer, and J. Hampshire, “Performance of MoS2/metal composite coatings used for dry machining and other industrial applications,” Surf. Coat. Technol. 123, 84–91 (2000).

    Article  CAS  Google Scholar 

  19. W. Lauwerens, J. Wang, J. Navratil, E. Wieërs, J. D’haen, L. M. Stals, J. P. Celis, and Y. Bruynseraede, “Humidity resistant MoSx films prepared by pulsed magnetron sputtering,” Surf. Coat. Technol. 131, 216–221 (2000).

    Article  CAS  Google Scholar 

  20. V. Fominski, M. Demin, V. Nevolin, D. Fominski, R. Romanov, M. Gritskevich, and N. Smirnov, “Reactive pulsed laser deposition of clustered-type MoSx (x ~ 2, 3, and 4) films and their solid lubricant properties at low temperature,” Nanomater. 10 (4), 653 (2020).

  21. T. Kubart, T. Polcar, L. Kopecký, R. Novák, and D. Nováková, “Temperature dependence of tribological properties of MoS2 and MoSe2 coatings,” Surf. Coat. Technol. 193, 230–233 (2005).

    Article  CAS  Google Scholar 

  22. F. Gustavsson, S. Jacobson, A. Cavaleiro, and T. Polcar, “Frictional behavior of selfadaptive nanostructural Mo–Se–C coatings in different sliding conditions,” Wear 303, 286–296 (2013).

    Article  CAS  Google Scholar 

  23. E. A. Marchenko and T. A. Lobova, “Use of refractory metal diselenides to ensure the stability of operation of friction units,” Vestn. Nauch.-Tekh. Razvit., No. 5 (21), 16–21 (2009).

  24. T. A. Lobova and E. A. Marchenko, “Self-lubricating coatings for the friction units of spacecraft,” Vestn. Mashinostr., No. 11, 35–38 (2004).

  25. T. B. Yaqub, T. Vuchkov, M. Evaristo, and A. Cavaleiro, “DCMS Mo–Se–C solid lubricant coatings—synthesis, structural, mechanical and tribological property investigation,” Surf. Coat. Technol. 378, 124992 (2019).

  26. T. Vuchkov, T. B. Yaqub, M. Evaristo, and A. Cavaleiro, “Synthesis, microstructural and mechanical properties of self-lubricating Mo–Se–C coatings deposited by closed-field unbalanced magnetron sputtering,” Surf. Coat. Technol. 394, 125889 (2020).

  27. T. B. Yaqub, S. Bruyere, J.-F. Pierson, T. Vuchkov, and A. Cavaleiro, “Insights into the wear track evolution with sliding cycles of carbon-alloyed transition metal dichalcogenide coatings,” Surf. Coat. Technol. 403, 126360 (2020).

  28. T. B. Yaqub, K. H. Kannur, T. Vuchkov, C. Pupier, C. Héau, and A. Cavaleiro, “Molybdenum diselenide coatings as universal dry lubricants for terrestrial and aerospace applications,” Mater. Lett. 275, 128035 (2020).

    Article  CAS  Google Scholar 

  29. T. Hudec, A. Bondarev, V. Izai, V. Šroba, L. Satrapinskyy, T. Roch, V. Turiničová, B. Grančič, T. Polcar, and M. Mikula, “Titanium doped MoSe2 coatings—synthesis, structure, mechanical and tribological properties investigation,” Appl. Surf. Sci. 568, 150990 (2021).

    Article  CAS  Google Scholar 

  30. T. A. Lobova and E. A. Marchenko, “Tribological transition metal dichalcogenides,” Trenie Smazka Mashin. Mekhanizm., No. 1, 38–45 (2015).

  31. A. D. Breki, A. L. Didenko, V. V. Kudryavtsev, E. S. Vasil’eva, O. V. Tolochko, A. G. Kolmakov, Yu. A. Fadin, N. N. Sergeev, A. E. Gvozdev, N. E. Stariko, and D. A. Provotov, “Synthesis and tribotechnical properties of composite coatings with a PM-DADFE polyimide matrix and fillers of tungsten dichalcogenide nanoparticles under dry sliding friction,” Materialoved., No. 12, 36–40 (2015).

  32. A. D. Breki, E. S. Vasil’eva, M. Yu. Maksimov, and S. G. Chulkin, “Loading capacity of lubricating compositions with WS2 and WSe2 nanoparticles for railway bushings,” Vor. Materialoved., No. 2(70), 109–149 (2012).

  33. S. Domínguez-Meister, T. C. Rojas, M. Brizuela, and J. C. Sánchez-López, “Solid lubricant behavior of MoS2 and WSe2-based nanocomposite coatings,” Sci. Technol. Adv. Mater. 18 (1), 122–133 (2017).

    Article  Google Scholar 

  34. R. Qu, X. Wen, Y. Zhao, T. Wang, R. Yao, and J. Lu, “Ultrasonic-assisted top-down preparation of NbSe2 micro/nanoparticles and hybrid material as solid lubricant for sliding electrical contact,” Ultrason. Sonochem. 73, 105491 (2021).

    Article  CAS  Google Scholar 

  35. T. A. Lobova and E. A. Marchenko, “Self-lubricating coatings for the friction units of spacecraft,” Vestn. Mashinostr., No. 11, 35–38 (2004).

  36. R. Ripan and I. Chetyanu, Inorganic Chemistry. Chemistry of Metals (Mir, Moscow, 1972), Vol. 2.

  37. T. A. Lobova, Y. A. Balashov, S. I. Rupasov, and V. I. Bodnarchuk, “Features of acquiring finely dispersed powders of molybdenum and tungsten diselenides by grinding in centrifugal planetary mills,” Russ. J. Non-Ferr. Met. 54 (6), 513–517 (2013).

    Google Scholar 

  38. D. D. Ryabov, N. S. Naumkin, A. B. Shestakov, A. A. Ivanenko, and N. P. Shestakov, “Epoxy polymer formed as a result of polymerization at the epoxy resin–hardener interface,” Aktual. Probl. Aviats. Kosmonavt. 1 (8), 133–134 (2012).

    Google Scholar 

  39. T. V. Lapitskaya and V. A. Lapitskii, “Comparative properties of polyester and epoxy resins and composites based on them,” Komposit. Mir, No. 2 (71), 54–56 (2017).

    Google Scholar 

  40. G. V. Malysheva, V. A. Nelyub, I. V. Bessonov, and Yu. A. Kurganova, Technological Processes for Producing Polymer Composite Materials (MGTU, Moscow, 2016).

    Google Scholar 

  41. A. M. Mikhal’chenkov, S. A. Lushkina, M. A. Mikhal’chenkova, and V. I. Lavrov, “Factors determining the functionality of precipitation-hardened composites based on epoxy resins (mechanical engineering),” Vestn. Bryansk GSKhA, No. 2–2, 25–28 (2015).

  42. I. I. Zlotnikov, O. I. Pronevich, A. I. Kravchenko, and I. V. Zakharov, “Mechanical and adhesive properties of composite materials based on epoxy resin and silicate fillers,” Vestn. GGTU, No. 2 (81), 46–51 (2020).

    Google Scholar 

  43. A. I. Barabanova, P. L. Shevnin, T. A. Pryakhina, K. A. Bychko, V. V. Kazantseva, B. G. Zavin, Ya. S. Vygodskii, A. A. Askadskii, O. E. Filippova, and A. R. Khokhlov, “Nanocomposites based on epoxy resin and silicon dioxide particles,” Vysokomol. Soedin., Ser. A. Fiz. Polimer. 50 (7), 1242–1254 (2008).

    CAS  Google Scholar 

  44. S. N. Gladkikh, V. M. Kolobkova, and E. N. Basharina, “New filling and impregnation cold curing compounds based on modified epoxy resins,” Klei. Germetiki. Tekhnologii, No. 7, 9–14 (2006).

    Google Scholar 

  45. S. V. Goncharov and V. A. Ivanov, “Centrifugal production of gradient polymer composite materials of antifriction purpose based on epoxy resins,” Uprochn. Tekhnol. Pokryt., No. 3 (75), 3–7 (2011).

  46. M. A. Gavrilov and V. N. Vernigorova, “Composite materials based on epoxy resin,” Region. Arkhitekt. Stroit., No. 2, 50–56 (2013).

  47. V. V. Sorokin, O. N. Sharapov, N. M. Shun’kin, and N. Yu. Kiryushina, “New polymer composites based on epoxy resin filled with technical waste,” Vestn. BGTU, No. 6, 8–13 (2019).

    Google Scholar 

  48. K. I. Chernyak, Epoxy Compounds and Their Application (Sudpromgiz, Leningrad, 1967).

    Google Scholar 

  49. V. A. Bely, A. I. Sviridenok, and M. I. Petrokovets, Friction and Wear in Polymer-Based Materials (Elsevier, Amsterdam, 2013).

    Google Scholar 

Download references

Funding

On the part of the Baikov Institute of Metallurgy and Materials Science, this work was performed within the framework of state task no. 075-00715-22-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Lobova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobova, T.A., Kolmakov, A.G., Prutskov, M.E. et al. Strength and Tribotechnical Characteristics of an Epoxy Compound–WSe2 Composite Material. Russ. Metall. 2022, 1284–1292 (2022). https://doi.org/10.1134/S0036029522100342

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522100342

Keywords:

Navigation