Skip to main content
Log in

Calculation of the Molar Concentrations of Ions in the Molten System AlCl3–1-Butyl-3-Methylimidazolium Chloride

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Chloroaluminate ionic liquids are the most promising electrolytes for the low-temperature electrolysis of aluminum and in aluminum-ion batteries. An important problem in this area is the determination of the ionic composition and the ion concentrations in an ionic liquid. The low-temperature AlCl3–1-butyl-3-methylimidazolium chloride melt is studied in the acidic range of aluminum chloride concentrations (at the molar fractions of aluminum chloride from 0.5 to 0.67). The cycle of measurements of the ionic liquid density is carried out by a dilatometric method in a wide temperature range (from 0 to 100°C) in order to calculate the molar concentrations of ions in the electrolyte under study. The molar volumes of the ionic liquid are calculated from the experimental values of density. The isotherms and polytherms of the density and molar volume of the ionic liquid are linear. The ionic liquid density decreases and the molar volume increases with increasing temperature. The density increases and the molar volume of the ionic liquid decreases with increasing molar fraction of aluminum chloride in the melt due to an increase in the concentration of the heavier anion (\({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{-}\)) compared to that of the \({\text{AlCl}}_{{\text{4}}}^{-}\) anion. The ionic liquid under study is presented as a mixture of two salts: 1-butyl-3-methylimidazolium–\({\text{AlCl}}_{{\text{4}}}^{-}\) (ionic liquid at an aluminum chloride molar fraction of 0.5) and 1-butyl-3-methylimidazolium–\({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{-}\) (ionic liquid at an aluminum chloride molar fraction of 0.67). The rule of additive addition of densities and molar volumes is proved for mixtures of these salts. The molar concentrations of ions present in the mixture are calculated. The dependences of the concentration of each ion on the temperature and the molar fraction of aluminum chloride can be described by linear functions. The molar concentrations of each type of ions decrease with increasing temperature due to an increase in the molar volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Pradhan and R. G. Reddy, Mater. Chem. Phys. 143 (2), 564–569 (2014). http://doi.org/10.1016/j.matchemphys.2013.09.033

    Article  CAS  Google Scholar 

  2. I. J. Hess and J. F. Betz, “Description of Al deposition plant based on AlCl3 and LiH soln. in ethyl ether,” Met. Fin. 3, 38–42 (1971).

    Google Scholar 

  3. L. Simanavičius and A. Šarkis, Metal. Electrochim. Acta 46, 499–507 (2000). https://doi.org/10.1016/S0013-4686(00)00537-5

    Article  Google Scholar 

  4. L. Legrand, A. Tranchant, and R. Messina, Electrochim. Acta 39, 1427–1431 (1994). https://doi.org/10.1016/0013-4686(94)85054-2

    Article  CAS  Google Scholar 

  5. T. Mori, Y. Orikasa, K. Nakanishi, C. Kezheng, M. Hattori, T. Ohta, and Y. Uchimoto, J. Power Sources 313, 9–14 (2016). https://doi.org/10.1016/jjpowsour.2016.02.062

    Article  CAS  Google Scholar 

  6. P. K. Lai and M. Skyllas-Kazacos, J. Electroanal. Chem. 248, 431–440 (1988). https://doi.org/10.1016/0022-0728(88)85103-9

    Article  CAS  Google Scholar 

  7. S. Takahashi, L. A. Curtiss, D. Gosztola, N. Koura, and M.-L. Saboungi, Inorg. Chem. 34, 2990–2993 (1995). https://doi.org/10.1021/ic00115a029

    Article  CAS  Google Scholar 

  8. C. Ferrara, V. Dall’Asta, V. Berbenni, E. Quartarone, and P. Mustarelli, J. Phys. Chem. 121, 26607–26614 (2017). https://doi.org/10.1021/acs.jpcc.7b07562

    Article  CAS  Google Scholar 

  9. D. Lee, G. Lee, and Y. Tak, “Hypostatic instability of aluminum anode in acidic ionic liquid for aluminum-ion battery,” Nanotechnology 29, 36LT01 (2018).

    Article  Google Scholar 

  10. F. Liu, Y. Deng, X. Han, W. Hu, and C. Zhong, J. Alloys Compd. 654, 163–170 (2016). https://doi.org/10.1016/jjallcom.2015.09.137

    Article  CAS  Google Scholar 

  11. V. A. Elterman, P. Y. Shevelin, D. L. Chizhov, L. A. Yolshina, E. A. Il’ina, A. V. Borozdin, M. I. Kodess, M. A. Ezhikova, and G. L. Rusinov, Electrochim Acta 323, 134806 (2019). https://doi.org/10.1016/j.electacta.2019.134806

    Article  CAS  Google Scholar 

  12. A. N. Baraboshkin, Electrocrystallization of Metals from Molten Salts (Nauka, Moscow, 1976).

    Google Scholar 

  13. A. A. Fannin, L. A. King, J. A. Levisky, and J. S. Wilkes, J. Phys. Chem. 88 2609–2614 (1984). https://doi.org/10.1021/j150656a037

    Article  CAS  Google Scholar 

  14. J. S. Wilkes, J. S. Frye, and G. F. Reynolds, Inorg. Chem. 22, 3870–3872 (1983). https://doi.org/10.1021/ic00168a011

    Article  CAS  Google Scholar 

  15. M.-C. Huang, C.-H. Yang, C.-C. Chiang, S.-C. Chiu, Y.-F. Chen, C.-Y. Lin, L.-Y. Wang, Y.-L. Li, C.-C. Yang, and W.-S. Chang, Energies 11, 2760 (2018). https://doi.org/10.3390/en11102760

    Article  CAS  Google Scholar 

  16. H. Wang, S. Gu, Y. Bai, S. Chen, N. Zhu, C. Wu, and F. Wu, Mater. Chem. A 3, 22677–22686 (2015). https://doi.org/10.1039/C5TA06187C

    Article  CAS  Google Scholar 

  17. A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma, D. J. Stech, R. L. Vaughn, J. S. Wilkes, and J. L. Williams, J. Phys. Chem. 88, 2614–2621 (1984). https://doi.org/10.1021/j150656a038

    Article  CAS  Google Scholar 

  18. Y. Zheng, K. Dong, Q. Wang, J. Zhang, and X. Lu, J. Chem. Eng. Data 58, 32–42 (2013). https://doi.org/10.1021/je3004904

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-33-90032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Elterman.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elterman, V.A., Yolshina, L.A., Shevelin, P.Y. et al. Calculation of the Molar Concentrations of Ions in the Molten System AlCl3–1-Butyl-3-Methylimidazolium Chloride. Russ. Metall. 2021, 246–252 (2021). https://doi.org/10.1134/S0036029521020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521020063

Keywords:

Navigation