Skip to main content
Log in

Powder Titanium Nickelide: Technology and Properties

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The influence of various schemes of thermomechanical treatment (TMT) on the structure and properties of two sintered nickel-rich binary TiNi powder alloys is shown. TMT is found to decrease the average grain size and to increase the strength characteristics, the alloy density, and the plasticity relative to the initial sintered state. The influence of TMT on the phase composition of the alloy is detected by X-ray diffraction. TMT is shown to promote the formation of the triclinic R-martensite or strain aging with the precipitation of the Ti2Ni3 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. Otsuka and X. Ren, “Recent developments in the research of shape memory alloys,” Intermetallics 273275, 134–148 (1999).

  2. A. Misochenko et al., “Microstructure evolution and mechanical behavior in shape memory nanostructured TiNi alloy,” Defect Diffus. Forum 385, 169–174 (2018).

  3. M. K. Ibrahim, E. Hamzah, S. N. Saud, and E. M. Nazim, “Powder metallurgy fabrication of porous 51 (at %) Ni–Ti shape memory alloys for biomedical applications,” Shape Mem. Superelast. 4, 327–336 (2018).

  4. K. Kuribayashi, K. Tsuchiya, Z. You, et al., “Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil,” Mater. Sci. Eng. A 419, 131–137 (2006).

  5. G. Song, N. Ma, and H.-N. Li, “Applications of shape memory alloys in civil structures,” Eng. Struct. 28, 1266–1274 (2006).

  6. D. Hartl, D. Lagoudas, J. Mabe, and F. Calkins, “Use of a Ni60Ti shape memory alloy for active jet engine chevron application. Part I,” Thermomech. Charact. Smart Mater. Struct. 19, 15–20 (2009).

  7. E. Makino, T. Mitsuya, and T. Shibata, “Fabrication of TiNi shape memory micropump,” Sensors and Actuators A: Phys. 88, 256– 262 (2001).

  8. J. Abadie, N. Chaillet, and C. Lexcellent, “Modeling of a new SMA micro-actuator for active endoscopy applications,” Mechatronics 19, 437–442 (2009).

  9. S. V. Shishkin and N. A. Makhutov, Calculation and Designing of Power Structures Based on Shape Memory Alloys (Izhevsk, 2007).

    Google Scholar 

  10. Yu. K. Okunev, V. V. Rybin, and V. N. Slepnev, “Prospects for the development of production of cast billets from titanium alloys and its intermetallic compounds,” Vopr. Materialoved., No. 4, 22–36 (2005).

  11. M. Yu. Kollerov, A. V. Aleksandrov, D. E. Gusev, and A. A. Sharonov, “Influence of a charge material and a melting method on the structure and the shape memory effect of nickelide-based titanium alloy ingots,” Tekhnol. Legkikh Splavov, No. 2, 87–93 (2012).

    Google Scholar 

  12. M. Yu. Kollerov, A. A. Il’in, I. S. Pol’kin, A. S. Fainbron, D. E. Gusev, and S. V. Khachin, “Structural aspects of the manufacture of semiproducts made from titanium nickelide–based alloys,” Russ. Metall. (Metally), No. 5, 417–425 (2007).

  13. N. N. Popov, T. I. Sysoeva, S. D. Prokoshkin, V. F. Larkin, and I. I. Vedernikov, “Mechanical properties and reactive stresses of Ti–Ni–Nb shape memory alloys,” Russ. Metall. (Metally), No. 4, 317–325 (2007).

  14. Shape Memory Materials, Ed. by K. Otsuka and C. M. Wayman (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  15. Yu. F. Yasenchuk and V. E. Gunter, “Influence of the initial combustion temperature on the micro- and macrostructure of titanium nickelide formed by SHS,” Fundam. Problemy Sovr. Materialoved., No. 1, 24–28 (2005).

  16. Yu. F. Yasenchuk, N. V. Artyukhova, and V. E. Gunter, “Reaction sintering of porous titanium nickelide and its structure,” Fundam. Problemy Sovr. Materialoved., No. 3, 11–16 (2010).

  17. A. V. Kasimtsev, A. V. Shuitsev, and S. N. Yudin, “Method of fabricating TiNi-based alloy bars,” RF Patent 2630740, 2017.

  18. A. V. Kasimtsev, A. V. Shuitsev, G. V. Markova, and S. N. Yudin, “Method for fabricating a powder TiNi alloy with a high level of mechanical properties,” RF Patent 2632047, 2017.

  19. A. V. Kasimtsev and Yu. V. Levinskii, Hydride–Calcium Powders of Metals, Intermetallics, Refractory Compounds, and Composite Materials (Izd. MITKhT, Moscow, 2012).

  20. A. V. Kasimtsev, G. V. Markova, A. V. Shuitsev, Yu. V. Levinskii, T. A. Sviridova, and A. V. Alpatov, “Powder hydride-calcium intermetallic TiNi,” Izv. Vyssh. Uchebn. Zaved., Poroshk. Metallurg. Funkts. Pokryt., No. 3, 31–37 (2014).

  21. A. V. Kasimtsev, G. V. Markova, A. V. Shuitsev, Yu. V. Levinskii, T. A. Sviridova, and A. V. Alpatov, “Changing a structure during the consolidation of calcium hydride powders of the TiNi intermetallic compound,” Metallurg, No. 11, 108–114 (2014).

    Google Scholar 

  22. V. G. Chuprina and I. M. Shalya, “Reaction of TiNi with oxygen,” Powder Met. Metal Ceram. 41, 85–89 (2002).

  23. S. P. Galkin, B. A. Romantsev, and E. A. Kharitono, “Putting into practice innovative potential in the universal radial-shear rolling process,” CIS Iron Steel Rev. Jan. 2014 (9), 35–39 (2014).

  24. B. V. Karpov, P. V. Patrin, S. P. Galkin, E. A. Kharitonov, and I. B. Karpov, “Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤200 mm),” Metallurgist 61 (9–10), 884–890 (2018).

  25. S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko, E. Lukyanova, and V. Perezhogin, “Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling,” J. Alloys Compd. 774, 969–979 (2019).

  26. A. V. Kasimtsev, G. V. Markova, A. V. Shuytsev, T. A. Sviridova, and S. S. Volod’ko, “Changes in the structure and properties of powdered calcium hydride titanium nickelide during rotary forging,” Tekhnol. Legkikh Splavov, No. 3, 44–52 (2016).

    Google Scholar 

  27. M. Yu. Kollerov, D. E. Gusev, A. V. Sharova, and A. V. Aleksandrov, “Structure formation in a TN1 alloy during deformation and heat treatment,” Titan, No. 3, 4–10 (2010).

    Google Scholar 

  28. S. D. Prokoshkin, L. M. Kaputkina, S. A. Bondareva, O. Yu. Tikhomirova, L. P. Fatkullina, and S. V. Oleinikova, “Structure of hot-deformed austenite and properties of a Ti–Ni–Fe alloy after HTMT,” Fiz. Met. Metalloved. 71 (3), 144–149 (1991).

  29. G. V. Markova, A. V. Kasimtsev, S. S. Volod’ko, and B. B. Bubnenkov, “Influence of helical rolling on the structure and properties of powder TiNi. Part 1,” Tsvetn. Met., No. 11, 75–82 (2018).

  30. G. V. Markova, A. V. Kasimtsev, S. S. Volod’ko, and I. A. Alimov, “Influence of helical rolling on the structure and properties of powder TiNi. Part 2,” Tsvetn. Met., No. 12, 75–81 (2018).

  31. G. V. Markova, A. V. Kasimtsev, S. S. Volod’ko, S. N. Yudin, I. A. Alimov, S. S. Goncharov, and T. A. Sviridova, “Influence of extrusion of powder TiNi alloy on its structure and properties,” Tekhnol. Legkikh Splavov, No. 3, 34–42 (2019).

    Google Scholar 

  32. B. Yuan, M. Zhu, and C. Y. Chung, “Biomedical porous shape memory alloys for hard-tissue replacement materials,” Materials 11, 1716 (2018).

  33. GOST 18898–89 (ISO 2738–87). Powder Products. Methods for Determining Density, Oil Content, and Porosity (Izd. Standartov, Moscow, 1990).

  34. GOST 1497–84 (ISO 6892–84). Metals. Tensile Test Methods (Standartinform, Moscow, 2008).

  35. I. I. Kornilov, O. K. Belousov, and E. V. Kachur, Titanium Nickelide and Shape Memory Alloys (Nauka, Moscow, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kasimtsev or S. S. Volodko.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasimtsev, A.V., Markova, G.V., Volodko, S.S. et al. Powder Titanium Nickelide: Technology and Properties. Russ. Metall. 2020, 1267–1275 (2020). https://doi.org/10.1134/S0036029520110087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520110087

Navigation