Skip to main content
Log in

Study of Alloy Microstructure Based on TiNi After High-Temperature Treatment

  • Published:
Metal Science and Heat Treatment Aims and scope

Features of microstructure formation for alloy based on titanium nickelide after high-temperature treatment at 1050 – 1250°C are studied. Heat treatment conditions are stipulated diffusion welding and sintering regimes developed previously for alloys based on TiNi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. D. Shlyapin, D. E. Gusev, K. S. Senkevich, and V. S. Mamaev, “Structure and properties of welded joints of alloys based on titanium nickelide TiN,” Tekhnol. Legkikh Splavov, No. 3, 65 – 72 (2008).

  2. L. Alberty Vieira, F. M. Braz Fernandes, R. M. Miranda, et al., “Mechanical behaviour of Nd:YAG laser welded superelastic NiTi,” Mater. Sci. Eng. A, 528(16 – 17), 5560–5565 (2011).

    Article  Google Scholar 

  3. B. E. Paton, D. M. Kaleko, V. P. Shevchenko, et al., “Weldability of alloys of the Ti – Ni system with shape memory effect,” Avtomat. Svarka, No. 5, 3 – 11 (2006).

  4. K. S. Senkevich and S. D. Shlyapin, “Investigation of the process of diffusion bonding of alloys based on titanium nickelide,” Welding Int., 26(9), 736 – 738 (2012).

    Article  Google Scholar 

  5. K. S. Senkevich and M. I. Knyazev, “Evaluation of the possibility of implementing the process of supersolidus joining of alloys based on TiNi,” Perspekt. Mater., No. 2, 55 – 59 (2014).

  6. D. E. Gusev, K. S. Senkevich, and M. I. Knyazev, “Effect of high-temperature treatment on the structure and properties of TiNi base alloys,” Metalloved. Term. Obrab. Met., No. 4, 33 – 37 (2012).

  7. M. Yu. Kollerov, A. A. Il’in, I. S. Pol’kin, et al., “Structural aspects of semifinished product manufacturing technology for alloys based on titanium nickelide,” Metally, No. 5, 77 – 85 (2007).

  8. P. Olier, F. Barcelo, J. L. Bechade, et al., “Effects of impurities content (oxygen, carbon, nitrogen) on microstructure and phase transformation temperatures of near equiatomic TiNi shape memory alloys,” J. PHYS. IVFRANCE 7 (1997), Colloque C5, Supplement au Journal de Physique I11 de novembre.

  9. V. N. Khodorenko, V. É. Gyunter, and M. I. Saldatova, “Effect of titanium nickelide alloy compositionon its structure and formation of a grain-boundary assembly,” Izv. Vyssh. Uchebn. Zaved., Fizika, 53(8), 55 – 62 (2010).

    Google Scholar 

  10. Alan R. Pelton, Scott M. Russell, and John DiCello “The physical metallurgy of nitinol for medical applications,” J. Minerals, Metals Mater. Soc., 55(5), 33 – 37 (2003).

  11. K. Otsura and X. Ren, “Physical metallurgy of Ti – Ni-based shape memory alloys,” Progr. Mater. Sci., 50, 511 – 678 (2005).

    Article  Google Scholar 

  12. Tom Duerig, Alan Pelton, and Christine Trepanier, Nitinol: The Book. Part I. Mechanisms and Behavior. Chapter 9. Alloying and Composition.

  13. M. Morakabati, M. Aboutalebi, S. Kheirandish, et al., “High temperature deformation and processing map of a NiTi intermetallic alloy,” Intermetallics, 19(10), 1399 – 1404 (2011).

    Article  Google Scholar 

  14. Alejandro Toro, Fei Zhou, Ming H. Wu, et al., “Misiolek characterization of non-metallic inclusions in superelastic NiTi tubes,” J. Mater. Eng. Perform., 18(5 – 6), 4448 – 458 (2009).

  15. J. Bhagyaraj, K. V. Ramaiah, C. N. Saikrishna, S. K. Gouthama Bhaumik, “Behavior and effect of Ti2Ni phase during processing of NiTi shape memory alloy wire from cast ingot,” J. Alloys Compounds, 581, 344 – 351 (2013).

    Article  Google Scholar 

  16. K. S. Senkevich, “Study of the microstructure of diffusion bonded alloys based on TiNi,” Metalloved. Term. Obrab. Met., No. 12(702), 39 – 43 (2013).

  17. M. Morakabati, S. Kheirandish, M. Aboutalebi, et al., “A study on the hot workability of wrought NiTi shape memory alloy,” Mater. Sci. Eng. A., 528(18), 5656 – 5663 (2011).

    Article  Google Scholar 

  18. V. G. Chuprina, and I. M. Shalya, “Features of intermetallic TiNi reaction with oxygen,” Poroshk. Metal., No. 1/2, 95 – 101 (2002).

  19. M. Yu. Kollerov, A. A. Il’in, D. E. Gusev, and D. A. Lamzin, ”Effect of deformation mechanisms on metallic material fatigue properties,” Metally, No. 5, 72 – 79 (2008).

Download references

Research was carried out with RFFI financial support within the scope of project No. 14-03-31995_mol_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Senkevich.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 5, pp. 28 – 33, May, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senkevich, K.S., Gusev, D.E. Study of Alloy Microstructure Based on TiNi After High-Temperature Treatment. Met Sci Heat Treat 58, 273–278 (2016). https://doi.org/10.1007/s11041-016-0002-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-016-0002-z

Key words

Navigation