Skip to main content
Log in

Hardening of Light Metals and Alloys with Ultrafine Fibrous β Silicon Carbide

  • HARDENING AND COATING TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Methods for the production and application of ultrafine β silicon carbide fibers for hardening metal matrix composite materials based on Al and Mg are developed. The fundamental possible application of the fabricated fibrous silicon carbide for creating Al–SiC and Mg–SiC composites by liquid-phase stirring without additional wetting reagents under a layer of protective fluxes at the melting temperature of the matrix alloy is shown. Ultrafine SiC is found to be uniformly distributed over the composite volume. The microhardness of the sample surface increases with the silicon carbide content as compared to the initial materials and composites made from other silicon carbide modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. N. Gulbin, V. A. Popov, and I. Sevostiyanov, “Metal matrix composites reinforced with the high-strength nanopowders,” Nanoindustriya, No. 1, 16–19 (2007).

    Google Scholar 

  2. E. N. Kablov, “Innovative developments of the FSUE VIAM SSC of RF for the realization of ‘Strategic Directions in Developing Materials and Their Processing Technologies up to 2030,’” Aviats. Mater. Technol. 34 (1), 3–33 (2015).

    Google Scholar 

  3. H. M. Zakaria, “Microstructural and corrosion behavior of Al/SiC metal matrix composites,” Ain Shams Eng. J. 5, 831–838 (2014).

    Article  Google Scholar 

  4. Ch.-P. Li, Zh.-G. Wang, M. Zha, Ch. Wang, H.‑Ch. Yu, H.-Yu. Wang, and Q.-Ch. Jiang, “Effect of preoxidation treatment of nano-sic particulates on microstructure and mechanical properties of SiC/Mg–8Al–1Sn composites fabricated by powder metallurgy combined with hot extrusion,” Materials (Basel) 9 (12), 964 (2016). https://doi.org/10.3390/ma9120964

    Article  CAS  Google Scholar 

  5. G. Roewer, U. Herzog, K. Trommer, et al. “Silicon carbide. A survey of synthetic approaches, properties and applications,” Struct. Bonding 101, 59–135 (2002).

    Article  CAS  Google Scholar 

  6. V. M. Efremenkova and V. G. Sevast’yanov, “Information support of the silicon carbide research,” Nauchno-Tekh. Inf. Ser. 1. Org. Met. Inform. Rab., No. 9, 16 (2004).

  7. E. Stephen, Advances in Silicon Carbide Processing and Applications, Ed. by Saddow Anant Agarwal (Artech House, Boston, London, 2004).

    Google Scholar 

  8. V. P. Rastegaev, “Production of the semiconductor silicon carbide single crystals in vacuum,” Perspekt. Mater., No. 2, 43–48 (2008).

  9. L. S. Ratkin, “New developments of the Russian Academy of Sciences in the field of nanotechnologies,” Nano Microsyst. Tech., No. 4, 2–4 (2010).

  10. Silicon Carbide: Technology, Properties, and Application, Ed. by A. E. Belyaeva and R. V. Konakova, (ISMA, Kharkov, 2010).

    Google Scholar 

  11. M. Mukherjee, Silicon Carbide—Materials, Processing and Applications in Electronic Devices, Ed. by M. Mukherjee (InTech., 2011).

    Book  Google Scholar 

  12. V. M. Kevorkijan, M. Komak, and D. Kolar, “Low-temperature synthesis of sinterable SiC powders by carboth ermic reduction of colloidal SiO2,” Mater. Sci. 27, 2705–2712 (1992).

    Article  CAS  Google Scholar 

  13. H. P. Martin, R. Ecke, and E. Muller, “Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction,” Eur. Ceram. Soc. 18, 1737 (1998).

    Article  CAS  Google Scholar 

  14. W. Wesch, “Silicon carbide: synthesis and processing,” Nucl. Instrum. Methods Phys. Res. B. 116, 305 (1996).

    Article  CAS  Google Scholar 

  15. V. G. Sevastyanov, E. P. Simonenko, Yu. S. Ezhov, and N. T. Kuznetsov, “Thermodynamic analysis of the production of silicon carbide via silicon dioxide and carbon,” Mater. Sci. Forum 59, 457–460 (2004).

    Google Scholar 

  16. Z. Ju, L. Xu, Q. Pang, Z. Xing, X. Ma, and Y. Qian, “The synthesis of nanostructured SiC from waste plastics and silicon powder,” Nanotechnology, No 2, 20–55 (2009).

    Google Scholar 

  17. S. M. Oh, M. Cappelli, and D. W. Park, “Preparation of nano-sized silicon carbide powder using thermal plasma,” Korean J. Chem. Eng. 19, 903–907 (2002).

    Article  CAS  Google Scholar 

  18. V. D. Krstic, “Production of fine, high-purity beta silicon carbide powders,” Am. Ceram. Soc. 75, 170–174 (1992).

    Article  CAS  Google Scholar 

  19. V. G. Sevast’yanov, R. G. Pavelko, and N. T. Kuznetsov, “The effect of the nature of the fine carbon precursors on the morphology of the silicon carbide nanoparticles,” Chim. Technol. 1, 12–17 (2007).

    Google Scholar 

  20. S. D. Kurbakov and T. A. Mireev, “Precipitation of the high-density silicon carbide coatings at pyrolysis of the silane chloride derivatives in the fluidized bed,” Khim. Tverd. Topl., No. 2, 60–72 (2009).

  21. B. Babić, D. Bučevac, A. Radosavljević-Mihajlović, A. Došen, et al. “New manufacturing process for nanometric SiC,” J. Eur. Ceram. Soc. 32 (9), 1901–1906 (2012).

    Article  Google Scholar 

  22. L. Wang, S. Dimitrijev, J. Han, F. Iacopi, and J. Zou, “Transition between amorphous and crystalline phases of SiC deposited on Si substrate using H3SiCH3,” J. Cryst. Growth 311 (19), 4442–4446 (2009).

    Article  CAS  Google Scholar 

  23. M. P. Orthnerz, L. W. Rieth, and F. Solzbacher, “Design and performance of an LPCVD reactor for the growth of 3C-silicon carbide,” Electrochem. Soc. 92 (6), 1296–1302 (2009).

    Google Scholar 

  24. H. ElGazzar, H. G. Abdel-Rahman Salem, and F. Nassar, “Preparation and characterizations of amorphous nanostructured SiC thin films by low energy pulsed laser deposition,” Appl. Surf. Sci. 256, 2056–2060 (2010).

    Article  CAS  Google Scholar 

  25. L. K. Orlov, E. A. Steinman, T. N. Smyslova, N. L. Ivina, and A. N. Tereshchenko, “Peculiarities and mechanisms of the silicon carbide film growth on silicon,” Fiz. Tverd. Tela 54 (4), 666–672 (2012).

    Google Scholar 

  26. I. K. Beisembetov, K. Kh. Nusupov, N. B. Beisenkhanov, S. K. Zharikov, B. K. Kenzhaliev, T. K. Akhmetov, and B. Zh. Seitov, “Synthesis of the SIC thin films on the Sl substrates by the ion-beam spraying method,” Poverkhnost., No. 4, 81 (2015).

  27. E. López-Honorato, P. J. Meadows, J. Tan, and P. Xiao, “Control of stoichiometry, microstructure, and mechanical properties in SiC coatings produced by fluidized bed chemical vapor deposition,” Mater. Res. Soc. Symp. Proc. 23, 1785–1796 (2008).

  28. Y. Hwang, D.-H. Riu, H.-J. Kang, J.-H. An, W. S. Jung, D. Chun, and Y. Kim, “Carbothermal synthesis of β‑SiC powders from silicon and SiO2-coated carbon powders,” Int. J. Mater. Res. 105 (4), 392–396 (2014).

    Article  CAS  Google Scholar 

  29. V. I. Gorovenko, V. A. Knyazik, and A. S. Shteinberg, “High-temperature interaction between silicon and carbon,” Ceram. Int. 19 (2), 129–132 (1993).

    Article  CAS  Google Scholar 

  30. V. N. Anfilogov, A. S. Lebedev, V. M. Ryzhkov, and I. A. Blinov, “Carbothermal synthesis of nanoparticulate silicon carbide in a self-contained protective atmosphere,” Inorg. Mater. 52 (7), 655–660 (2016).

    Article  CAS  Google Scholar 

  31. V. N. Anfilogov, A. S. Lebedev, and V. M. Ryzhkov, “Carbothermal synthesis of nanosized silicon carbide under an autonomous protective atmosphere,” Dokl. Chem. 460 (1), 10–12 (2015).

    Article  CAS  Google Scholar 

  32. A. S. Lebedev, V. E. Eremyashev, E. A. Trofimov, and V. N. Anfilogov, “Thermodynamic analysis of the interaction of components in the Si–C–O system in the carbothermic synthesis of silicon carbide,” Dokl. Chem. 484 (2), 41–43 (2019).

    Article  CAS  Google Scholar 

  33. V. N. Anfilogov and A.S. Lebedev, “Method of carbothermal synthesis of fine silicon carbide powders,” RF Patent 2537616, Byull. Izobret., No. 1 (2015).

  34. B. Venkatesh and B. Harish, “Mechanical properties of metal matrix composites (Al/SiCp) particles produced by powder metallurgy,” Int. J. Eng. Res. Gen. Sci. 3, 1277–1284 (2015).

    Google Scholar 

  35. E. N. Kablov, B. V. Shchetanov, A. A. Shavnev, A. N. Nyafkin, et al., “Properties and application of the highly filled Al–SiC metal matrix composite material,” Vestn. Novgorod. Gos. Univ. 3 (1), 56–59 (2011).

    Google Scholar 

  36. M. Esmaily, N. Mortazavi, J. E. Svensson, M. Halvarsson, and M. A. Wessen, “New semi-solid casting technique for fabricating SiC-reinforced Mg alloys matrix composites,” Composites B 94, 176–189 (2016).

    Article  CAS  Google Scholar 

  37. T. Xiangrong, A. Zhu, J. Wei, and R. Han, “Preparation and forming technology of particle reinforced aluminum matrix composites,” Mater. Sci. Adv. Compos. Mater., 1–9 (2017).

  38. S. Yu. Khripchenko and P. A. Oborin, “Device for stirring the molten aluminium alloy (variants),” RF Patent 2567970, Byull. Izobret., No. 31 (2015).

  39. S. Yu. Khripchenko, S. A. Denisov, V. M. Dolgikh, and A. M. Pavlinov, “Use of a travelling magnetic field “rod” inductor for stirring molten metal in an aluminum bath,” Magnetohydrodynamics 52, 407–416 (2016).

    Article  Google Scholar 

  40. S. Yu. Kripchenko, L. V. Nikulin, V. M. Dolgikh, and S. A. Denisov, “Structure and properties of the ingots made of the aluminum-silicon alloy produced by the magnetohydrodynamic influence,” Tsvetn. Met., No. 6, 82–86 (2014).

  41. P. S. Pershin, A. V. Suzdaltsev, and Yu. P. Zaikov, “Synthesis of silumins in KF–AlF3–SiO2 melts,” Electrochem. Soc. D 163 (5), 167–170 (2016).

    Article  Google Scholar 

Download references

Funding

This work was performed within the scope of a state assignment of the Ministry of Education and Science of the Russian Federation (project no. 5–100, state assignment no. 11.9643.2017/8.9) and supported in part by the program of basic research of the Ural Branch of the Russian Academy of Sciences (project no. 18-10-5-16, Creation of ceramic and metal ceramic composites based on ultrafine silicon carbide).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lebedev.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.S., Eremyashev, V.E., Suzdal’tsev, A.V. et al. Hardening of Light Metals and Alloys with Ultrafine Fibrous β Silicon Carbide. Russ. Metall. 2020, 682–686 (2020). https://doi.org/10.1134/S0036029520060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520060129

Keywords:

Navigation