Skip to main content
Log in

Mechanical Properties of SiC-Fiber-Reinforced Reaction-Bonded Silicon Carbide

  • Published:
Inorganic Materials Aims and scope

Abstract

Reaction-bonded silicon carbide materials have been produced by infiltrating molten silicon into porous bodies consisting of silicon carbide, carbon black, and tungsten-core silicon carbide fibers. Their microstructure and mechanical properties have been studied as functions of reinforcing fiber content. Their bending strength, hardness, and modulus of elasticity have been shown to drop with increasing fiber content because of the increase in the porosity of the composite. At the same time, the fracture toughness of the composite rises to 5.2 MPa m1/2 as the fiber content is raised to 8%. Thus, the mechanical properties of the composite can be improved by optimizing its microstructure and reinforcing fiber content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Briggs, J., Engineering Ceramics in Europe and the USA, Worcester: Enceram, 2011.

    Google Scholar 

  2. Cheong, D.I., Kim, J., and Kang, S.J.L., Effects of isothermal annealing on the microstructure and mechanical properties of SiC ceramics hot-pressed with Y2O3 and Al2O3 additions, J. Eur. Ceram Soc., 2002, vol. 22, no. 8, pp. 1321–1327.

    Article  Google Scholar 

  3. Perevislov, S.N., Lysenkov, A.S., Titov, D.D., and Tomkovich, M.V., Hot-pressed ceramic SiC–YAG materials, Inorg. Mater., 2017, vol. 53, no. 2, pp. 220–225.

    Article  CAS  Google Scholar 

  4. Shinoda, Y., Yoshida, M., Akatsu, T., and Wakai, F., Effect of amount of boron doping on compression deformation of fine-grained silicon carbide at elevated temperature, J. Am. Ceram. Soc., 2004, vol. 87, no. 8, pp. 1525–1529.

    Article  CAS  Google Scholar 

  5. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, no. 3, pp. 763–777.

    Article  CAS  Google Scholar 

  6. Hayun, S., Paris, V., Mitrani, R., Kalabukhov, S., et al., Microstructure and mechanical properties of silicon carbide processed by spark plasma sintering (SPS), Ceram. Int., 2012, vol. 38, no. 8, pp. 6335–6340.

    Article  CAS  Google Scholar 

  7. Biswas, K., Solid state sintering of SiC-ceramics, Mater. Sci. Forum, 2009, vol. 624, pp. 71–89.

    Article  CAS  Google Scholar 

  8. Perevislov, S.N. and Nesmelov, D.D., Properties of SiC and Si3N4 based composite ceramic with nanosize component, Glass Ceram., 2016, vol. 73, nos. 7–8, pp. 249–252.

    Article  CAS  Google Scholar 

  9. Nesmelov, D.D., Kozhevnikov, O.A., Ordan’yan, S.S., and Perevislov, S.N., Precipitation of the eutectic Al2O3–ZrO2(Y2O3) on the surface of SiC particles, Glass Ceram., 2017, vol. 74, nos. 1–2, pp. 43–47.

    Article  CAS  Google Scholar 

  10. Perevislov, S.N. and Bespalov, I.A., Impact-resistant silicon-carbide-based ceramic materials, Tech. Phys. Lett., 2017, vol. 43, no. 8, pp. 720–722.

    Article  CAS  Google Scholar 

  11. Lysenkov, A.S., Kim, K.A., Titov, D.D., Frolova, M.G., et al., Composite material Si3N4/SiC with calcium aluminate additive, J. Phys.: Conf. Ser., 2018, vol. 1134, no. 1, paper 012 036.

  12. Perevislov, S.N., Panteleev, I.B., Shevchik, A.P., and Tomkovich, M.V., Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent, Refract. Ind. Ceram., 2018, vol. 58, no. 5, pp. 577–582.

    Article  CAS  Google Scholar 

  13. Wang, Y.X., Tan, S.H., and Jiang, D.L., The fabrication of reaction-formed silicon carbide with controlled microstructure by infiltrating a pure carbon preform with molten Si, Ceram. Int., 2004, vol. 30, no. 3, pp. 435–439.

    Article  CAS  Google Scholar 

  14. Nesmelov, D.D. and Perevislov, S.N., Reaction sintered materials based on boron carbide and silicon carbide, Glass Ceram., 2015, vol. 71, nos. 9–10, pp. 313–319.

    Article  CAS  Google Scholar 

  15. Perevislov, S.N., Shcherbak, P.V., and Tomkovich, M.V., High density boron carbide ceramics, Refract. Ind. Ceram., 2018, vol. 59, no. 1, pp. 32–36.

    Article  CAS  Google Scholar 

  16. Kim, J.-Y., An, H.-G., Kim, Y.-W., and Mitomo, M., R-curve behaviour and microstructure of liquid-phase sintered α-SiC, J. Mater. Sci. Lett., 2000, vol. 35, no. 15, pp. 3693–3697.

    Article  CAS  Google Scholar 

  17. Kawanishi, S., Yoshikawa, T., and Tanaka, T., Equilibrium phase relationship between SiC and a liquid phase in the Fe–Si–C system at 1523–1723 K, Mater. Trans., 2009, vol. 50, no. 4, pp. 806–813.

    Article  CAS  Google Scholar 

  18. Mazdiyasni, K.S., Fiber Reinforced Ceramic Matrix Composites: Materials, Processing, and Technology, Park Ridge: Noyes, 1990.

    Google Scholar 

  19. Feng, W., Zhang, L., Liu, Y., Li, X., et al., Fabrication of (SiCf + SiCw)/SiC composites by CVI combined with tape casting, Ceram. Int., 2015, vol. 41, no. 8, pp. 9995–9999.

    Article  CAS  Google Scholar 

  20. Prokip, V.E., Utkin, A.V., Batraev, I.S., and Baklanova, N.I., The design of zirconium and hafnium germanate interphase in SiCf/SiC composites, Ceram. Int., 2017, vol. 43, no. 5, pp. 4166–4174.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-17013\18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Afanas’eva, L.E. & Baklanova, N.I. Mechanical Properties of SiC-Fiber-Reinforced Reaction-Bonded Silicon Carbide. Inorg Mater 56, 425–429 (2020). https://doi.org/10.1134/S0020168520040123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520040123

Keywords:

Navigation