Skip to main content
Log in

Nanoindentation Study of the Effect of Low-Temperature Ion Irradiation on the Hardness of a Ferritic–Martensitic EK-181 Steel

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The hardness of a ferritic–martensitic steel EK-181 after ion irradiation to a maximum damaging dose of ~50 dpa in the temperature range 250–400°C is investigated. Nanoindentation is used to measure the mechanical properties. The hardnesses of the layer damaged by ions and that of the undamaged bulk material are found. At temperatures below 300°C, softening at a dose below 10 dpa and hardening at high doses of ~50 dpa are observed. Hardening is detected over the entire dose range at 400°C. The maximum hardness of the sample irradiated to ~50 dpa at 400°C is 1.7 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. G. Bondarenko, Radiation Physics, Structure, and Strength of Solids (Laboratoriya Znanii, Moscow, 2016).

    Google Scholar 

  2. M. Ando, H. Tanigawa, S. Jitsukawa, T. Sawai, Y. Katoh, A. Kohyama, K. Nakamura, and H. Takeuchi, “Evaluation of hardening behaviour of ion irradiated reduced activation ferritic/martensitic steels by an ultra-micro-indentation technique,” J. Nucl. Mater. 307311, 260–265 (2002).

    Article  CAS  Google Scholar 

  3. H. Ogiwara, A. Kohyama, H. Tanigawa, and H. Sakasegawa, “Irradiation-induced hardening mechanism of ion irradiated JLF-1 to high fluencies,” Fus. Eng. Des. 81, 1091–1097 (2006).

    Article  CAS  Google Scholar 

  4. C. Petersen, A. Povstyanko, V. Prokhorov, A. Fedoseev, O. Makarov, and B. Dafferner, “Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’,” J. Nucl. Mater. 367370, 544–549 (2007).

    Article  CAS  Google Scholar 

  5. A. G. Ioltukhovskiy, A. I. Blokhin, N. I. Budylkin, V. M. Chernov, M. V. Leont’eva-Smirnova, E. G. Mironova, E. A. Medvedeva, M. I. Solonin, S. I. Porollo, and L. P. Zavyalsky “Material science and manufacturing of heat-resistant reduced-activation ferritic–martensitic steels for fusion,” J. Nucl. Mater. 283287, 652–656 (2000).

    Article  CAS  Google Scholar 

  6. Xiang Liu, Yinbin Miao, Meimei Li, M. A. Kirk, and S. A. Maloy, “Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91,” J. Nucl. Mater. 490, 305–316 (2017).

    Article  CAS  Google Scholar 

  7. C. Topbasi, A. T. Motta, and M. A. Kirk, “In situ study of heavy ion induced radiation damage in HC616 (P92) alloy,” J. Nucl. Mater. 425, 48–53 (2012).

    Article  CAS  Google Scholar 

  8. E. A. Kuleshova, B. A. Gurovich, Z. V. Bukina, A. S. Frolov, D. A. Maltsev, E. V. Krikun, D. A. Zhurko, and G. M. Zhuchkov, “Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of 50–400°C,” J. Nucl. Mater. 490, 247–259 (2017).

    Article  CAS  Google Scholar 

  9. E. H. Lee, J. D. Hunn, G. R. Rao, R. L. Klueh, and L. K. Mansur, “Tripleion beam studies of radiation damage in 9Cr ± 2WVTa ferritic/martensitic steel for a high power spallation neutron source,” J. Nucl. Mater. 271272, 385–390 (1999).

    Article  Google Scholar 

  10. Y. Serruys, M.-O. Ruault, P. Trocellier, S. Miro, A. Barbu, L. Boulanger, O. Kaïtasov, S. Henry, O. Leseigneur, P. Trouslard, S. Pellegrino, and S. Vaubaillon, “JANNUS: experimental validation at the scale of atomic modeling,” Physique 9, 437–444 (2008).

    Article  CAS  Google Scholar 

  11. S. J. Zinkle and L. L. Snead, “Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations,” Scr. Mater. 143, 154–160 (2018).

    Article  CAS  Google Scholar 

  12. S. Rogozhkin, A. Bogachev, O. Korchuganova, A. Nikitin, N. Orlov, A. Aleev, A. Zaluzhnyi, M. Kozodaev, T. Kulevoy, B. Chalykh, R. Lindau, A. Möslang, P. Vladimirov, M. Klimenkov, M. Heilmaier, J. Wagner, and S. Seils, “Nanostructure evolution in ODS steels under ion irradiation,” Nucl. Mater. Energy. 9, 66–74 (2016).

    Article  Google Scholar 

  13. S. V. Rogozhkin, A. A. Nikitin, A. A. Khomich, N. A. Iskandarov, V. V. Khoroshilov, A. A. Bogachev, A. A. Luk’yanchuk, O. A. Raznitsyn, A. S. Shutov, P. A. Fedin, R. P. Kuibida, T. V. Kulevoy, A. L. Vasil’ev, M. Yu. Presnyakov, K. S. Kravchuk, and A. S. Useinov, “Simulation experiments on heavy ion beams for modeling radiation damage of structural materials of nuclear and thermonuclear power plants,” Yad. Fiz. Inzhiniring 3, 139–152 (2019).

    Google Scholar 

  14. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  15. E. G. Herbert, W. C. Oliver, and G. M. Pharr, “Nanoindentation and the dynamic characterization of viscoelastic solids,” Phys. D: Appl. Phys. 41, 074021 (2008).

    Article  Google Scholar 

  16. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, et al., “Effect of irradiation by heavy ions on the nanostructure of perspective materials for nuclear power plants,” Phys. Met. Metallogr. 13, 200–211 (2012).

    Article  Google Scholar 

  17. T. V. Kulevoy, B. B. Chalyhk, P. A. Fedin, A. L. Sitnikov, A. V. Kozlov, R. P. Kuibeda, S. L. Andrianov, N. N. Orlov, K. S. Kravchuk, S. V. Rogozhkin, A. S. Useinov, E. M. Oks, A. A. Bogachev, A. A. Nikitin, N. A. Iskandarov, and A. A. Golubev, “Surface modification of ferritic steels using MEVVA and duoplasmatron ion sources,” Rev. Sci. Instr. 87, 02C102 (2016).

    Article  Google Scholar 

  18. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—the stopping and range of ions in matter,” Nucl. Instr. Meth. Phys. Res. Sec. B: Beam Inter. Mater. Atoms 268, 1818–1823 (2010).

    Article  CAS  Google Scholar 

  19. R. E. Stoller, M. B. Toloczko, G. S. Was, A. G. Certain, S. Dwaraknath, and F. A. Garner, “On the use of SRIM for computing radiation damage exposure,” Nucl. Instr. Met. Phys. Res. Sec. B: Beam Inter. Mater. Atoms 310, 75–80 (2013).

    Article  CAS  Google Scholar 

  20. K. Durst, B. Backes, O. Franke, and M. Göken, “Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations,” Acta Mater. 54, 2547–2555 (2006).

    Article  CAS  Google Scholar 

  21. G. M. Pharr, E. G. Herbert, and Y. Gao, “The indentation size effect: a critical examination of experimental observations and mechanistic interpretations,” Ann. Rev. Mater. Res. 40, 271–292 (2010).

    Article  CAS  Google Scholar 

  22. W. D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity,” J. Mech. Phys. Solids 46, 411–425 (1998).

    Article  CAS  Google Scholar 

  23. A. Kareera, A. Prasitthi payong, D. Krumwiede, D. M. Collins, P. Hosemann, and S. G. Roberts, “An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves,” Nucl. Mater. 498, 274–281 (2018).

    Article  Google Scholar 

  24. Y. Huang, F. Zhang, K. C. Hwang, W. D. Nix, G. M. Pharr, and G. Feng, “A model of size effects in nano-indentation,” J. Mech. Phys. Solids 54, 1668–1686 (2006).

    Article  Google Scholar 

  25. S. V. Rogozhkin, V. S. Ageev, A. A. Aleev, A. G. Zaluzhnyi, M. V. Leont’eva-Smirnova, and A. A. Nikitin, “Tomographic atom-probe analysis of temperature-resistant 12%-chromium ferritic–martensitic steel EK‑181,” Phys. Met. Metallogr. 108, 579–585 (2009).

    Article  Google Scholar 

  26. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, N. A. Iskandarov, A. A. Nikitin, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Nanoscale study of ferritic–martensitic steel Rusfer EK-181 after various thermal treatments,” Inorg. Mater.: Appl. Res. No. 3, 129–134 (2012).

    Article  Google Scholar 

  27. S. V. Rogozhkin, N. A. Iskandarov, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibida, T. V. Kulevoi, V. V. Chalykh, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, “Investigation of the influence of irradiation with Fe ions on the nanostructure of ferritic martensitic steel EK-181,” Inorg. Mater.: Appl. Res., No. 4, 426–430 (2013).

Download references

ACKNOWLEDGMENTS

Irradiation and atom-probe tomography analysis were performed at the Center of the Collaborative Access KAMIKS (http://kamiks.itep.ru), Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute; nanoindantation was carried out at the Technological Institute for Superhard and Novel Carbon Materials (http://www.tisncm.ru/suec/suec.html).

Funding

This work was supported by the Russian Scientific Foundation, project no. 17-19-01696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nikitin.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, A.A., Rogozhkin, S.V., Kulevoi, T.V. et al. Nanoindentation Study of the Effect of Low-Temperature Ion Irradiation on the Hardness of a Ferritic–Martensitic EK-181 Steel. Russ. Metall. 2019, 1184–1189 (2019). https://doi.org/10.1134/S0036029519110077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519110077

Keywords:

Navigation