Skip to main content
Log in

Structural-Phase Transitions in Cold-Resistant Low-Carbon Martensitic Steels Susceptible to Structural Heredity

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

An approach proposed to creating steels with a new combination of mechanical properties and a high impact toughness at low temperatures. This approach is based on the phenomenon of structural heredity and consists in the formation of a two-phase martensite–martensite structure and the designing of a carbide subsystem. A grain size distribution is found, and the possibility of two-stage formation of low-carbon austenite is shown. A martensitic transformation model, which takes into account the grain size distribution, is developed and experimentally tested. The models are tested on low-carbon Cr–Mn–Ni–Mo–V–Nb martensitic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Kleiner, Low-Carbon Martensitic Steels (Izd. Perm’ Gos. Tekh. Univ., Perm’, 1993).

    Google Scholar 

  2. L. M. Kleiner and A. A. Shatsov, Structural High-Strength Low-Carbon Steels of the Martensitic Class (Izd. Perm’ Gos. Tekh. Univ., Perm’, 2008).

    Google Scholar 

  3. B. Hutchinson, T. Siwecki, J. Komenda, J. Hagstrom, R. Lagneborg, J.-E. Hedin, and M. Gladh, “New vanadium-microalloyed bainitic 700 MPa strip steel product,” Iron and Steel 41 (1) (2014).

    Google Scholar 

  4. C. L. F. de Assis, R. G. Jasinevicius, and A. R. Rodrigues, “Micro end-milling of channels using ultrafine-grained low-carbon steel,” Int. J. Advans. Manuf. Tech. (2014).

    Google Scholar 

  5. Zhen-Qing Liu, Goro Miyamoto, Zhi-Gang Yang, Chi Zhang, and Tadashi Furuhara, “Carbon enrichment in austenite during bainite transformation in Fe–3Mn–C alloy,” The Miner., Metals & Mater. Soc. & ASM Intern. (2015).

    Google Scholar 

  6. B. B. He and M. X. Huang, “Revealing the intrinsic nanohardness of lath martensite in low carbon steel,” The Miner., Metals & Mater. Soc. & ASM Intern. A 46 February, 688 (2015).

  7. F. G. Caballero, C. Garcia-Mateo, M. J. Santofimia, M. K. Miller, and C. G. de Andresa, “New experimental evidence on the incomplete transformation phenomenon in steel,” Acta Mater. 57, 8–17 (2009).

    Article  Google Scholar 

  8. V. I. Gorynin, S. Yu. Kondrat’ev, M. I. Olenin, and V. V. Rogozhkin, “Concept of carbide design of steels with high cold resistance,” Metalloved. Term. Obrab. Met., No. 10, 32–37 (2014).

    Google Scholar 

  9. V. Ryaposov, L. M. Kleiner, A. A. Shatsov, and E. A. Noskova, “Formation of a granular and lath structure in low-carbon martensitic steels by thermal cycling,” Metalloved. Term. Obrab. Met., No. 9, 33–39 (2008).

    Google Scholar 

  10. Yu. Kaletin, A. G. Ryzhkov, and Yu. V. Kaletina, “Increasing the impact toughness of structural steels in the formation of carbide-free bainite,” Fiz. Met. Metalloved. 116 (1), 114–120 (2015).

    Google Scholar 

  11. Yu. N. Simonov, M. Yu. Simonov, D. O. Panov, V. P. Vylezhnev, and A. Yu. Kaletin, “Formation of the structure of lower carbide-free bainite upon isothermal treatment of Kh3G3MFS and KhN3MFS steels,” Metalloved. Term. Obrab. Met., No. 2(728), 4–13 (2016).

    Google Scholar 

  12. Ming-Hui Cai, Hua Ding, Zheng-You Tang, Hua-Ying Lee, and Young-Kook Leel, “Strain hardening behavior of high performance FBDP, TRIP and TWIP steels,” Steel Res. Intern. 82 (3), 242–248 (2011). doi 10.1002/srin.201000132

    Article  Google Scholar 

  13. F. S. Sánchez-Caballero, M. A. Selles, A. V. Martinez-Sanz, and R. Plafuture, “Twip/trip steels. Future trends in automotive industries,” Fasc. Manag. Tech. Eng. X(XX) (3), 1.23–1.26 (2011).

    Google Scholar 

  14. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, and N. Saeidi, “Development of a new ultrafine/nano ferrite-carbide microstructure by thermomechanical processing,” The Chinese Soc. for Metals. http://link.springer.com/journal/40195.

  15. Hardox HiTuf. General Product Description. http://www.ssab.com/ru/Products-Services/Products-Solutions/2/Hardox/Hardox-HiTuf. Cited March 9, 2015.

  16. Domex 960. Advanced High Strength Steel. General Product Description. http://www.ssab.com/ru/Brands/Domex/2/Domex-960. Cited March 9, 2015.

  17. MnVS6. Product Specification. http://www.ovako.com/steel_navigator/pdf/19MnVS6_English.pdf. Cited June 7, 2015.

  18. L. M. Kleiner, D. M. Larinin, L. V. Spivak, and A. A. Shatsov, “Phase and structural transformations in low-carbon martensitic steels,” Fiz. Met. Metalloved., No. 2, 161–168 (2009).

    Google Scholar 

  19. L. M. Kleiner, L. V. Spivak, A. A. Shatsov, M. G. Zakirova, and D. M. Larinin, “Phase transformations in a 07Kh3GNM alloy,” Vestn. Perm’ Gos. Univ., Fizika, No. 1, 100–103 (2009).

    Google Scholar 

  20. M. N. Bodyako, S. A. Astapchik, and G. B. Yaroshevich, Maraging Steels (Nauka Tekhnika, Minsk, 1976).

    Google Scholar 

  21. Physical Metallurgy and Heat Treatment of Steel and Cast Iron: A Handbook. Vol. 1. Test and Study Techniques, Ed. by A. G. Rakhshtadt, L. M. Kaputkina, S. D. Prokoshkin, and A. V. Supov (Intermet Inzhiniring, Moscow, 2004).

  22. T. Ya. Kosolapova, Carbides (Metallurgiya, Moscow, 1968).

    Google Scholar 

  23. V. M. Farber, V. A. Khotinov, O. V. Selivanova, O. N. Polukhina, A. S. Yurovskikh, and D. O. Panov, “Austenite formation kinetics and effect of heating in the intercritical temperature range on the structure of 08G2B steel,” Metalloved. Term. Obrab. Met., No. 11(737), 11–16 (2016).

    Google Scholar 

  24. S. S. Yugai, L. M. Kleiner, A. A. Shatsov, and N. N. Mitrokhovich, “Structural heredity in low-carbon martensitic steels,” Metalloved. Term. Obrab. Met., No. 12, 24–29 (2004).

    Google Scholar 

  25. Phase and Structural Transformations in Steels, Ed. by V. N. Urtsev (Knizhn. Izd., Magnitogorsk, 2008), Vol. 5, pp. 62–75.

  26. M. E. Blanter, Theory of Heat Treatment (Metallurgiya, Moscow, 1984).

    Google Scholar 

  27. M. P. Kashchenko and V. G. Chashchina, Dynamic Theory of the γ–α Martensitic Transformation in Iron Alloys and the Solution of the Problem of the Critical Grain Size (Izhevsk Inst. Komp. Issled., Izhevsk, 2010).

    Google Scholar 

  28. V. A. Lobodyuk and E. I. Estrin, Martensitic Transformations (Fizmatlit, Moscow, 2009).

    Google Scholar 

  29. Advanced Materials. Structure and Investigation Methods: A Tutorial, Ed. by D. L. Merson (TGU, MISiS, Tol’yatti, 2006).

  30. Proceedings of International Conference on Atomic Fracture Mechanism, Ed. by M. A. Shtremel’ (Metallurgizdat, Moscow, 1963).

  31. V. N. Arzamasov, V. A. Brostrem, N. A. Bushe, et al., Structural Materials: A Handbook, Ed. by V. N. Arzamasov (Mashinostroenie, Moscow, 1990).

  32. Static Strength and Fracture Mechanics of Steels, Ed. by V. Dal’ and V. Anton (Metallurgiya, Moscow, 1986).

  33. J. Christian, The Theory of Transformations in Metals and Alloys. Part 1: Thermodynamics and General Kinetic Theory (Pergamon, Oxford, 1975).

    Google Scholar 

  34. M. Borozdyka and L. B. Getsov, Stress Relaxation in Metals and Alloys (Metallurgiya, Moscow, 1978).

    Google Scholar 

  35. V. A. Kozvonin, A. A. Shatsov, I. V. Ryaposov, M. G. Zakirova, and K. N. Generalova, “Structure, phase transformations, mechanical properties, and cold resistance of low-carbon martensitic steels,” Fiz. Met. Metalloved., No. 8, 862–870 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Berezin.

Additional information

Original Russian Text © S.K. Berezin, A.A. Shatsov, S.K. Greben’kov, L.V. Spivak, 2018, published in Metally, 2018, No. 3, pp. 9–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezin, S.K., Shatsov, A.A., Greben’kov, S.K. et al. Structural-Phase Transitions in Cold-Resistant Low-Carbon Martensitic Steels Susceptible to Structural Heredity. Russ. Metall. 2018, 432–444 (2018). https://doi.org/10.1134/S0036029518050038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518050038

Keywords

Navigation