Skip to main content
Log in

Structure and mechanical properties of hot-deformed low-carbon martensitic steel

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structural changes in low-carbon martensitic 15Kh2G2NMFBA steel induced by its hot forging in the temperature range 1150–850°C have been studied. The calculated cracking resistance parameter I c is in agreement with its experimental value. A relation is found between the lath sizes in the martensite structure and the change in the impact toughness characteristics. A combined regime of hot deformation and hot treatment of the low-carbon martensitic steel is proposed to form submicrometer-sized structural elements and high strength and impact toughness characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. P. Rodionov and V. M. Schastlivtsev, Steel Single Crystals (UrO RAN, Yekaterinburg, 1996).

    Google Scholar 

  2. G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977).

    Google Scholar 

  3. R. A. Grenge, “The rapid heat treatment of steel,” Met. Trans. 2 (1), 65–78 (1971).

    Article  Google Scholar 

  4. J. J. Burke and V. Weiss, Ultrafine-Grain Metals (Syracuse University Press, Syracuse, 1970).

    Book  Google Scholar 

  5. I. V. Ryaposov, L. M. Kleiner, and A. A. Shatsov, “Bulk nanostructuring of low-carbon martensitic steels by heat treatment,” Metalloved. Term. Obrab. Met., No. 9, 9–14 (2012).

    Google Scholar 

  6. K. Valkov and M. Georgiev, Strength and Cracking Resistance of Sphero-Graphite Cast Irons with the Structure of Carbide-free Nanobainite (Perm NIPU, Perm, 2014).

    Google Scholar 

  7. Yu. A. Meshkov and G. A. Pakharenko, Structure of Metal and the Brittleness of Steel Constructions (Naukova dumka, Kiev, 1985).

    Google Scholar 

  8. V. M. Schastlivtsev, V. N. Olesov, L. V. Smirnov, E. A. Fokina, and A. Yu. Kaletin, “Influence of magnetic field on the morphology of martensite and the mechanical properties of alloy 50N26,” Fiz. Met. Metalloved., No. 11, 166–174 (1990).

    Google Scholar 

  9. V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Martensitic Transformation in Magnetic Field (UrO RAN, Yekaterinburg, 2007).

    Google Scholar 

  10. M. A. Stremel’, Yu. G. Andreev, and D. A. Kozlov, “Structure and the strength of packet martensite,” Metalloved. Term. Obrab. Met., No. 4, 10–15 (1999).

    Google Scholar 

  11. L. M. Kleiner, L. I. Kogan, and R. I. Entin, “Properties of low-carbon alloyed martensite,” Fiz. Met. Metalloved., 33 (4), 824–830 (1972).

    Google Scholar 

  12. M. A. Stremel’, Strength of Alloys (MISiS, Moscow, 1997).

    Google Scholar 

  13. L. M. Kleiner, A. A. Shatsov, D. M. Larinin, and M. G. Zakirova, “Structure of low-carbon martensite and the structural strength of steels,” Perspektivnye Mater., No. 1, 59–67 (2011).

    Google Scholar 

  14. L. M. Kleiner, A. A. Shatsov, and D. M. Larinin, “Low-carbon martensitic steels. Alloying and properties,” Metalloved. Term. Obrab. Met., No. 11, 29–34 (2010).

    Google Scholar 

  15. E. V. Kozlov, N. A. Popova, O. V. Kabanina, S. I. Klimashin, and V. E. Gromov, Evolution of the Phase Composition, the Defect Structure, the Internal Stresses and the Redistribution of Carbon during Tempering Cast Structural Steel (SibGIU, Novokuznetsk, 2007).

    Google Scholar 

  16. L. M. Kleiner and A. A. Shatsov, Structural High- Strength Low-Carbon Martensitic Steels: Textbook (Perm GTU, Perm, 2008).

    Google Scholar 

  17. A. B. Kut’in and V. V. Zabil’skii, Structure, Properties, and Fracture of Structural Steels (UrO RAN, Yekaterinburg, 2006).

    Google Scholar 

  18. P. V. Odesskii, I. I. Vedyakov, and V. M. Gorpinchenko, Prevention of Brittle Fracture of Metallic Construction Structures (Intermet Inzhiniring, Moscow, 1998).

    Google Scholar 

  19. L. M. Utevskii, Diffraction Electron Microscopy in Physical Metallurgy (Metallurgiya, Moscow, 1973).

    Google Scholar 

  20. L. S. Moroz, Mechanics and Physics of Deformations and Fracture of Materials (Mashinostroenie, Leningrad, 1984).

    Google Scholar 

  21. D. R. Irwin et al., Fracture. Vol. 3. Engineering Basics and the Influence of the Environment (Academic Press, New York, 1968–1970).

    Google Scholar 

  22. V. I. Vladimirov, Physical Nature of Fracture of Metals (Metallurgiya, Moscow, 1984).

    Google Scholar 

  23. V. M. Finkel’, Physical Basics of Fracture Slowing-Down (Metallurgiya, Moscow, 1977).

    Google Scholar 

  24. M. V. Grabskii, Structure of Grain Boundaries in Metals (Metallurgiya, Moscow, 1972).

    Google Scholar 

  25. Fracture Toughness of High-Strength Materials (Metallurgiya, Moscow, 1972).

  26. Yu. G. Andreev, L. N. Devchenko, E. V. Shelekhov, and M. A. Stremel’, “Packing of martensite crystals in pseudosingle crystals,” Dokl. Akad. Nauk SSSR 237 (3), 574–576 (1977).

    Google Scholar 

  27. V. I. Izotov, “Morphology and crystallogeometry of lath martensite,” Fiz. Met. Metalloved 34 (1), 123–132 (1972).

    Google Scholar 

  28. K. Wakasa and C. M. Wayman, “The crystallography and morphology of lath martensite,” in Proceedings of the International Conference on Martensite Transformations ICOMAT-79 (Mass, Cambridge, 1979), pp. 34–39.

    Google Scholar 

  29. D. L. Merson, Promising Materials. Structure and Methods of Studies: Chapter12. Application of the Acoustic Emission Method in Physical Materials Science (TGU, MISiS, Moscow, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Romanov.

Additional information

Original Russian Text © I.D. Romanov, A.A. Shatsov, M.G. Zakirova, S.K. Berezin, 2016, published in Metally, 2016, No. 2, pp. 7–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, I.D., Shatsov, A.A., Zakirova, M.G. et al. Structure and mechanical properties of hot-deformed low-carbon martensitic steel. Russ. Metall. 2016, 174–180 (2016). https://doi.org/10.1134/S0036029516030113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516030113

Navigation