Skip to main content
Log in

Exploring the Effect of Ammonium Acetate on Volumetric, Viscometric and Conductive Properties of l-Aspartic Acid in Aqueous Medium at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Study of some physicochemical properties of l-aspartic aid in water and aqueous ammonium acetate has been undertaken for this investigation. Density, viscosity and conductivity of the solutions were measured at different temperatures. Volumetric parameters such as apparent molar volume \(({V}_{\Phi })\), partial molar volume \(({V}_{\Phi }^{0})\), partial molar expansibility \(({E}_{\Phi }^{0})\) and Hepler’s constant \(({{\partial }^{2}{V}_{\Phi }^{0}/{\partial T}^{2})}_{{p}})\) and viscometric parameters such as relative viscosity\({(\eta }_{r })\), viscosity coefficients \({(B}_{J }\mathrm\,{\text{and} }\,{ A}_{F})\), Gibbs free energy of activation of viscous flow of solvent and solute \({(\Delta \mu }_{1}^{\#,0}\mathrm\,\text{ and }\,{\Delta \mu }_{2}^{\#,0})\) respectively) and corresponding change in enthalpy \({\Delta H}_{2}^{\#,0}\) and entropy \({\Delta S}_{2}^{\#,0}\) have been derived from the experimentally measured density and viscosity values. Variation of these parameters with concentration and temperature was analysed in the light of ion–ion and ion–hydrophilic interactions. The possibility of ion pair formation and its effect on migration of charged particles in solution have been determined by analysing the molar conductance (Λm), association constant \({(K}_\text{A})\), Walden product and thermodynamic functions. These parameters were qualitatively correlated with changes in structure of water that occurs when l-Aspartic acid interacts with ammonium acetate in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sembira-Nahum, Y., Apelblat, A., Manzurola, E.: Volumetric properties of aqueous solutions of l-glutamic acid and magnesium-l-glutamate. J. Solution Chem. 37, 391–401 (2008). https://doi.org/10.1007/s10953-007-9245-z

    Article  CAS  Google Scholar 

  2. Deosarkar, S.D., Arsule, A.D., Sawale, R.T., Pingle, V.G.: Volumetric and viscometric studies of molecular interactions in systems containing tartaric acid in water/aqueous-l-arginine solutions at 303.15 K. J. Mol. Liq. 323, 114925 (2021). https://doi.org/10.1016/j.molliq.2020.114925

    Article  CAS  Google Scholar 

  3. Kumar, H., Kumar, V., Sharma, S., Katal, A., Alothman, A.A.: Volumetric and acoustic properties of amino acids l-leucine and l-serine in aqueous solution of ammonium dihydrogen phosphate (ADP) at different temperatures and concentrations. J. Chem. Thermodyn. 155, 106350 (2021). https://doi.org/10.1016/j.jct.2020.106350

    Article  CAS  Google Scholar 

  4. Arsule, A.D., Sawale, R.T., Deosarkar, S.D.: Temperature-dependent volumetric and ultraacoustic studies of α-amino acids in aqueous acetylsalicylic acid drug solutions. J. Mol. Liq. 275, 478–490 (2019). https://doi.org/10.1016/j.molliq.2018.10.122

    Article  CAS  Google Scholar 

  5. Rani, R., Kumar, A., Sharma, T., Bamezai, R.K.: Volumetric, acoustic and transport properties of ternary solutions of l-serine and l-arginine in aqueous solutions of thiamine hydrochloride at different temperatures. J. Chem. Thermodyn. 135, 260–277 (2019). https://doi.org/10.1016/j.jct.2019.03.039

    Article  CAS  Google Scholar 

  6. Sharma, S.K., Thakur, A.: Volumetric, acoustic and viscometric studies of solute–solute and solute–solvent interactions of glycyl-glycyl-glycine in aqueous tartaric acid at different temperatures. J. Mol. Liq. 322, 114527 (2021). https://doi.org/10.1016/j.molliq.2020.114527

    Article  CAS  Google Scholar 

  7. Ankita, N.A.K.: Study on the interactions of drug isoniazid in aqueous d-xylose/l-arabinose solutions at different temperatures using volumetric, acoustic and viscometric approaches. J. Mol. Liq. 298, 112086 (2020). https://doi.org/10.1016/j.molliq.2019.112086

    Article  CAS  Google Scholar 

  8. Savaroglu, G., Ildaser, A.C.: Volumetric interaction coefficients for some nucleosides in aqueous solution at T=298.15K. Thermochim. Acta 582, 86–93 (2014). https://doi.org/10.1016/j.tca.2014.03.004

    Article  CAS  Google Scholar 

  9. Gaba, R., Pal, A., Sharma, D., Kumar, H., Kumar, A.: Molecular interactions of some non-essential amino acids in aqueous solutions of 1-methylimidazolium chloride at different temperatures. J. Mol. Liq. 279, 711–718 (2019). https://doi.org/10.1016/j.molliq.2019.01.094

    Article  CAS  Google Scholar 

  10. Gaba, R., Malhotra, J., Pal, A., Sharma, D., Kumar, H.: Molecular interactions of l-glutamic acid and l-aspartic acid in aqueous solutions 1-heptyl-3-methyl imidazoliumtetrafluoroborate [C7mim][BF4] at different temperatures. J. Mol. Liq. 322, 114971 (2021). https://doi.org/10.1016/j.molliq.2020.114971

    Article  CAS  Google Scholar 

  11. Dhal, K., Singh, S., Talukdar, M.: Elucidation of molecular interactions of aspartic acid with aqueous potassium sorbate and sodium benzoate: Volumetric, viscometric and FTIR spectroscopic investigation. J. Mol. Liq. 361, 119578 (2022). https://doi.org/10.1016/j.molliq.2022.119578

    Article  CAS  Google Scholar 

  12. Dhal, K., Singh, S., Talukdar, M.: Volumetric, viscometric and spectroscopic studies of molecular interactions of glutamic acid with potassium sorbate and sodium benzoate in aqueous medium at T = 293.15–313.15 K. J. Mol. Liq. 361, 119578 (2022). https://doi.org/10.1016/j.molliq.2022.119578

    Article  CAS  Google Scholar 

  13. Talukdar, M., Singh, S., Dehury, S.K.: A review on conductometric studies of electrolytes in mixed solvent systems to understand ion–ion and ion–solvent interactions. Biointerface Res. Appl. Chem. 10(2), 5332–5337 (2020). https://doi.org/10.33263/BRIAC102.332337

    Article  CAS  Google Scholar 

  14. Kell, G.S.: Density, thermal expansibility and compressibility of liquid water from 00 to 1500 C: correlation and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data 20(1), 97–105 (1975). https://doi.org/10.1021/je60064a005

    Article  CAS  Google Scholar 

  15. Rajput, P., Singh, H., Kumar, A.: Volumetric, ultrasonic and viscometricbehavior of nucleosides (uridine and cytidine) in aqueous l-ascorbic acid solutions at different temperatures. J. Chem. Thermodyn.171, 106805 (2022). https://doi.org/10.1016/j.jct.2022.106805

    Article  CAS  Google Scholar 

  16. Richards, J.L.: Viscosity and the shapes of macromolecules: a physical chemistry experiment using molecular-level models in the interpretation of macroscopic data obtained from simple measurements. J. Chem. Educ. 70, 685–688 (1993). https://doi.org/10.1021/ed070p685

    Article  CAS  Google Scholar 

  17. Chauhan, S., Chauhan, M.S., Jyoti, J., Rajni,: Acoustic and viscosity studies of sodium dodecyl sulfate in aqueous solutions of gelatin. J. Mol. Liq. 148, 24–28 (2009). https://doi.org/10.1016/j.molliq.2009.05.002

    Article  CAS  Google Scholar 

  18. Chauhan, S., Pathania, L., Sharma, K., Kumar, G.: Volumetric, acoustical and viscometricbehavior of glycine and dl-alanine in aqueous furosemide solutions at different temperatures. J. Mol. Liq. 212, 656–664 (2015). https://doi.org/10.1016/j.molliq.2015.09.042

    Article  CAS  Google Scholar 

  19. Clugston, M., Fleming, R.: Advanced Chemistry, 1st edn. Oxford University Press, Oxford (2000)

    Google Scholar 

  20. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, 3rd edn., p. 358. Reinhold, New York (1958)

    Google Scholar 

  21. Hedwig, G.R.: Thermodynamic properties of peptide solutions 3. Partial molar volumes and partial molar heat capacities of some tripeptides in aqueous solution. J. Solution Chem. 17(4), 383–397 (1988). https://doi.org/10.1007/BF00650418

    Article  CAS  Google Scholar 

  22. Singh, H., Singh, A., Banipal, T.S., Singh, P., Bahadur, I.: Temperature and concentration dependent physicochemical interactions of L-ascorbic acid in aqueous LiCl solution: Experimental and theoretical study. Coll. Surf. A 623, 126672 (2021). https://doi.org/10.1016/j.colsurfa.2021.126672

    Article  CAS  Google Scholar 

  23. Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47(24), 4613–5461 (1969). https://doi.org/10.1139/v69-762

    Article  CAS  Google Scholar 

  24. Naseem, B., Arif, I., Jamal, M.A.: Kosmotropic and chaotropicbehavior of hydrated ions in aqueous solutions in terms of expansibility and compressibility parameters. Arab. J. Chem. 14(11), 103405 (2021). https://doi.org/10.1016/j.arabjc.2021.103405

    Article  CAS  Google Scholar 

  25. Hribar, B., Southall, N.T., Vlachy, V., Dill, K.A.: How ions affect the structure of water. J. Am. Chem. Soc. 124(41), 12302–12311 (2002). https://doi.org/10.1021/ja026014h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Banipal, T.S., Singh, K., Banipal, P.K., Kaur, J.: Study of interactions of l-aspartic acid and l-glutamic acid with some metal acetates through volumetric behaviour over the temperature range (288.15 to 318.15) K. J. Chem. Thermodyn. 40(7), 1166–1185 (2008). https://doi.org/10.1016/j.jct.2008.02.007

    Article  CAS  Google Scholar 

  27. Friedman, L., Krishnan, C.V., Franks, F.: Water a Comprehensive Treatise. Plenum Press, New York (1973)

    Google Scholar 

  28. Sarkar, A., Sinha, B.: Volumetric, acoustic and transport properties of metformin hydrochloride drug in aqueous D-glucose solutions at T = (298.15–318.15) K. J. Solution Chem. 46, 424–445 (2017). https://doi.org/10.1007/s10953-017-0584-0

    Article  CAS  Google Scholar 

  29. Ali, A., Shahjahan: Volumetric, viscometric and refractive index behavior of some α-amino acids in aqueous tetrapropylammonium bromide at different temperatures. J. Iran. Chem. Soc. 3(4), 340–350 (2006). https://doi.org/10.1007/BF03245957

    Article  CAS  Google Scholar 

  30. McMillan, W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13(7), 276–305 (1945). https://doi.org/10.1063/1.1724036

    Article  ADS  CAS  Google Scholar 

  31. Krishnan, C.V., Friedman, H.L.: Enthalpies of alkyl sulfonates in water, heavy water, and water-alcohol mixtures and the interaction of water with methylene groups. J. Solution Chem. 2(1), 37–51 (1973). https://doi.org/10.1007/BF00645870

    Article  Google Scholar 

  32. Laidler, K.J., Meiser, J.H.: Physical Chemistry, p. 269. Benjamin/Cummings, San Francisco (1982)

    Google Scholar 

  33. Fuoss, R.M.: Conductimetric determination of thermodynamic pairing constants for symmetrical electrolytes. Proc. Natl. Acad. Sci. U.S.A. 77(1), 34–38 (1980)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wahab, A., Mahiuddin, S.: Isentropic compressibility, electrical conductivity, shear relaxation time, surface tension, and Raman spectra of aqueous zinc nitrate solutions. J. Chem. Eng. Data 49, 126–132 (2004). https://doi.org/10.1021/je0302001

    Article  CAS  Google Scholar 

  35. Mondal, M., Basak, S., Choudhury, S., Ghosh, N.N., Roy, M.N.: Investigation of molecular interactions insight into some biologically active amino acids and aqueous solutions of an anti-malarial drug by physicochemical and theoretical approach. J. Mol. Liq. 341, 116933 (2021). https://doi.org/10.1016/j.molliq.2021.116933

    Article  CAS  Google Scholar 

  36. Raymond, M.: Fuoss, Conductance-concentration function for the paired ion model. J. Phys. Chem. 82(22), 7978–2427 (2018). https://doi.org/10.1021/j100511a017

    Article  Google Scholar 

  37. Fuoss, R.M., Accascina, F.: Electrolytic Conductance. Interscience, New York (1959)

    Google Scholar 

  38. Mehrdad, A., Hajikarimi, M.: Conductometric investigation of ceftriaxone disodium in aqueous solutions of 1-propanol and 2-propanol. J. Chem. Thermodyn. 142, 105972 (2020). https://doi.org/10.1016/j.jct.2019.105972

    Article  CAS  Google Scholar 

  39. Wright, M.R.: An Introduction to Aqueous Electrolyte Solutions. Wiley, Hoboken (2007)

    Google Scholar 

  40. Apelblat, A.: Limiting conductances of electrolytes and the Walden product in mixed solvents in a phenomenological approach. J. Phys. Chem. B 112(23), 7032–7044 (2008). https://doi.org/10.1021/jp802113v

    Article  CAS  PubMed  Google Scholar 

  41. Yan, Z., Li, W., Zhang, Q., Wang, X., Wang, J.: Effect of sodium caproate on the volumetric and conductometric properties of glycyl-l-glutamine and l-alanyl-l-glutamine in aqueous solution at 298.15 K. Fluid Phase Equil. 301, 156–162 (2011). https://doi.org/10.1016/j.fluid.2010.11.015

    Article  CAS  Google Scholar 

  42. Borun, A., Stasiewicz, A.W.: Conductivity studies of 1:1 electrolytes in water + methanol mixtures at 298.15 K. J. Mol. Liq. 344, 117695 (2021). https://doi.org/10.1016/j.molliq.2021.117695

    Article  CAS  Google Scholar 

  43. Yan, Z., Wen, X., Kang, Y., Zhang, S., Wu, S.: Volumetric and conductometric studies on the interactions of dipeptides with potassium perfluoroalkanesulfonate in aqueous solution at different temperatures. J. Chem. Thermodyn. 93, 172–178 (2016). https://doi.org/10.1016/j.jct.2015.10.004

    Article  CAS  Google Scholar 

  44. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, p. 571. Butterworths, London (1965)

    Google Scholar 

  45. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51(10), 2950–2964 (1929). https://doi.org/10.1021/ja01385a012

    Article  CAS  Google Scholar 

  46. PatilR, S., Shaikh, V.R., PatilP, D., BorseA, U., PatilK, J.: The viscosity B and D coefficients (Jones–Dole equation) studies in aqueous solutions of alkyltrimethylammonium bromides at 298.15 K. J. Mol. Liq. 200, 416–424 (2014). https://doi.org/10.1016/j.molliq.2014.11.003

    Article  CAS  Google Scholar 

  47. Crudden, J., Delaney, G.M., Feakins, D., O’Reilly, P.J., Waghorne, W.E., Lawrence, K.G.: The viscosity and structure of solutions. Part 2.—Measurement of the B coefficient of viscosity for alkali-metal chlorides in propan-1-ol–water mixtures at 25 and 35° C. J. Chem. Soc. Faraday Trans. 1 82, 2195–2206 (1986). https://doi.org/10.1039/F19868202195

    Article  CAS  Google Scholar 

  48. Glasstone, S., Laidle, K.J., Eyring, H.: The Theory of Rate Processes. McGraw Hill, New York (1941)

    Google Scholar 

  49. Jiang, X., Zhu, C., Ma, Y.: Volumetric and viscometric studies of amino acids in l-ascorbic acid aqueous solutions at T= (293.15 to 323.15)K. J. Chem. Thermodyn. 71, 50–63 (2014). https://doi.org/10.1016/j.jct.2013.11.002

    Article  CAS  Google Scholar 

  50. Ren, X., Zhu, C., Ma, Y.: Volumetric and viscometric study of amino acids in aqueous sorbitol solution at different temperatures. J. Chem. Thermodyn. 93, 179–192 (2016). https://doi.org/10.1016/j.jct.2015.10.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their heartfelt gratitude to the management of Siksha O Anusandan Deemed to be University for providing the opportunity to carry out the experimental work necessary to write this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content and (c) approval of the final version.

Corresponding authors

Correspondence to Malabika Talukdar or Sulochana Singh.

Ethics declarations

Conflict of interest

No financial or non-financial interests are directly or indirectly related to the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, M., Dey, S., Panda, A. et al. Exploring the Effect of Ammonium Acetate on Volumetric, Viscometric and Conductive Properties of l-Aspartic Acid in Aqueous Medium at Different Temperatures. J Solution Chem 53, 387–415 (2024). https://doi.org/10.1007/s10953-023-01335-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01335-7

Keywords

Navigation