Skip to main content
Log in

Mechanosynthesis of Sulfur-Containing Silver Halide Nanocomposites in a Dimethyl Sulfoxide Medium

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Transformations in the S–AgNO3–NH4X–NH4NO3 (X = Cl, Br, I) system show that nanoparticles and nanocomposites with a controlled size of particles and content of components can be synthesized via mechanical treatment and adding small amounts of a liquid in which the precursors are soluble. Nanoparticles form in a dimethyl sulfoxide (DMSO) medium through conventional (continuous dissolution–crystallization) or reactive means (continuous dissolution of precursors and their reacting with subsequent crystallization of the target product), rather than by direct mechanical activation. The first version is used for synthesizing sulfur nanoparticles (nanosulfur); the second, for synthesizing silver halides. Sulfur-containing S/AgX nanocomposites with a controlled content of sulfur are synthesized mechanochemically. A predetermined content of nanosulfur in the nanocomposites is obtained via the dissolution–crystallization (recrystallization) of sulfur in DMSO inside a mechanochemical reactor. The proposed technical solution allows the synthesis of S/AgX nanocomposites through processing AgNO3, NH4X, and NH4NO3 (diluent) precursors, commercial sulfur, and small amounts of DMSO in planetary ball mills with different fittings. The water-soluble components of the product of mechanosynthesis are readily washed off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. T. Friščić, S. L. Childs, S. A. A. Rizvi, and W. Jones, CrystEngComm. 11, 418 (2009). https://doi.org/10.1039/B815174A

    Article  Google Scholar 

  2. B. Meenatchi and V. Renuga, Chem. Sci. Trans. 4, 577 (2015). https://doi.org/10.7598/cst2015.1028

    Article  CAS  Google Scholar 

  3. P. Ying, J. Yu, and W. Su, Adv. Synth. Catal. 363, 1246 (2021). https://doi.org/10.1002/adsc.202001245

    Article  CAS  Google Scholar 

  4. P. A. Zaikin, O. T. Dyan, I. R. Elanov, and G. I. Borodkin, Molecules 26, 5756 (2021). https://doi.org/10.3390/molecules26195756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. Kosimov, G. Yusibova, J. Aruväli, et al., Green Chem. 24, 305 (2022). https://doi.org/10.1039/D1GC03433B

    Article  CAS  Google Scholar 

  6. E. Boldyreva, Chem. Soc. Rev. 42, 7719 (2013). https://doi.org/10.1039/C3CS60052A

    Article  CAS  PubMed  Google Scholar 

  7. A. A. Michalchuk, E. V. Boldyreva, A. M. Belenguer, et al., Front. Chem. 9, 685789 (2021). https://doi.org/10.3389/fchem.2021.685789

  8. E. V. Boldyreva, Faraday Discuss. 241, 9 (2023). https://doi.org/10.1039/D2FD00149G

    Article  CAS  PubMed  Google Scholar 

  9. M. Matsuoka and K. Danzuka, J. Chem. Eng. Jpn. 42, 393 (2009). https://doi.org/10.1252/jcej.09we068

    Article  CAS  Google Scholar 

  10. P. Baláž, M. Achimovičová, M. Baláž, et al., Chem. Soc. Rev. 42, 7571 (2013). https://doi.org/10.1039/C3CS35468G

    Article  PubMed  Google Scholar 

  11. A. Katsenis, A. Puškarić, V. Štrukil, et al., Nat. Commun. 6, 6662 (2015). https://doi.org/10.1038/ncomms7662

    Article  CAS  PubMed  Google Scholar 

  12. F. Kh. Urakaev, N. V. Khan, Zh. S. Shalabaev, B. B. Tatykaev, R. K. Nadirov, and M. M. Burkitbaev, Colloid J. 82, 76 (2020). https://doi.org/10.1134/S1061933X20010160

    Article  CAS  Google Scholar 

  13. D. Nieto-Castro, F. A. Garcés-Pineda, A. Moneo-Corcuera, et al., Inorg. Chem. 59, 7953 (2020). https://doi.org/10.1021/acs.inorgchem.9b03284

    Article  CAS  PubMed  Google Scholar 

  14. G. T. M. Kadja, T. R. Suprianti, M. M. Ilmi, et al., Microporous Mesoporous Mater. 47, 110550 (2020). https://doi.org/10.1016/j.micromeso.2020.110550

  15. V. V. Zyryanov, S. A. Petrov, and A. S. Ulihin, Ceram. Int. 47, 29499 (2021). https://doi.org/10.1016/j.ceramint.2021.07.118

    Article  CAS  Google Scholar 

  16. V. V. Zyryanov, Solid State Ionics 383, 115987 (2022). https://doi.org/10.1016/j.ssi.2022.115987

  17. R. Dubadi, S. D. Huang, and M. Jaroniec, Materials 16, 1460 (2023). https://doi.org/10.3390/ma16041460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. M. Burkitbayev and F. Kh. Urakaev, J. Mol. Liq. 316, 113886 (2020). https://doi.org/10.1016/j.molliq.2020.113886

  19. G.-X. Du, Q. Xue, H. Ding, and Z. Li, Int. J. Min Process. 141, 15 (2015). https://doi.org/10.1016/j.minpro.2015.06.008

    Article  CAS  Google Scholar 

  20. J. Lu, Z. Lu, X. Li, et al., J. Clean Prod. 92, 223 (2015). https://doi.org/10.1016/j.jclepro.2014.12.093

    Article  CAS  Google Scholar 

  21. J. Lu, X. Cong, Y. Li, et al., J. Clean Prod. 172, 1978 (2018). https://doi.org/10.1016/j.jclepro.2017.11.228

    Article  CAS  Google Scholar 

  22. T. Kurniawan, O. Muraza, A. S. Hakeem, and A. M. Al-Amer, Cryst. Growth Des. 17, 3313 (2017). https://doi.org/10.1021/acs.cgd.7b00295

    Article  CAS  Google Scholar 

  23. Y. S. de Oliveira, A. C. Oliveira, and A. P. Ayala, Eur. J. Pharm. Sci. 114, 146 (2018). https://doi.org/10.1016/j.ejps.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  24. P. Yang, X. Li, Z. Li, et al., ACS Sustain Chem. Eng. 10, 3513 (2022). https://doi.org/10.1021/acssuschemeng.1c07869

    Article  CAS  Google Scholar 

  25. F. Kh. Urakaev, A. I. Bulavchenko, B. M. Uralbekov, et al., Colloid J. 78, 210 (2016). https://doi.org/10.1134/S1061933X16020150

    Article  CAS  Google Scholar 

  26. Zh. Shalabayev, M. Baláž, N. Daneu, et al., ACS Sustain. Chem. Eng. 7, 12897 (2019). https://doi.org/10.1021/acssuschemeng.9b01849

    Article  CAS  Google Scholar 

  27. Zh. S. Shalabaev, F. Kh. Urakaev, M. Balazh, et al., Kazakh. Patent on Useful Model No. 5287, Byull. No. 32 (2020). https://gosreestr.kazpatent.kz/Utilitymodel/DownLoadFilePdf?patentId=326616&lang=ru.

  28. N. Khan, M. Baláž, M. Burkitbayev, et al., Appl Surf Sci. 601, 154122 (2012). https://doi.org/10.1016/j.apsusc.2022.154122

  29. N. V. Khan, M. Baláž, M. M. Burkitbayev, et al., Int. J. Biol. Chem. 15, 79 (2022). https://doi.org/10.26577/ijbch.2022.v15.i1.09

    Article  CAS  Google Scholar 

  30. F. Kh. Urakaev, M. M. Burkitbaev, B. M. Uralbekov, and Zh. S. Shalabaev, Euraz. Patent No. 033075, Byull. No. 2019-08 (2019). https://www.eapo.org/ru/publications/publicat/viewpubl.phpıd=033075; http://www.eapatis.com/Data/EATXT/eapo2019/PDF/201700540.pdf.

  31. F. Kh. Urakaev, M. M. Burkitbayev, and N. V. Khan, Int. J. Biol. Chem. 15, 54 (2022). https://doi.org/10.26577/ijbch.2022.v15.i2.09

    Article  CAS  Google Scholar 

  32. M. M. Burkitbaev, N. V. Khan, M. S. Madikasimova, et al., Kazakh. Patent on Useful Model No. 5241, Byull. No. 30 (2020). https://gosreestr.kazpatent.kz/Utilitymodel/DownLoadFilePdf?patentId=325175&lang=ru.

  33. F. Kh. Urakaev, Mendeleev Commun. 22, 215 (2012). https://doi.org/10.1016/j.mencom.2012.06.016

    Article  CAS  Google Scholar 

  34. F. Kh. Urakaev, Mendeleev Commun. 26, 546 (2016). https://doi.org/10.1016/j.mencom.2016.11.030

    Article  CAS  Google Scholar 

  35. R. G. LeBel and D. A. I. Goring, J. Chem. Eng. Data 7, 100 (1962). https://doi.org/10.1021/je60012a032

    Article  CAS  Google Scholar 

  36. R. Ellson, R. Stearns, M. Mutz, et al., Combust. Chem. High throughput Screen 8, 489 (2005). https://doi.org/10.2174/1386207054867382

    Article  CAS  Google Scholar 

  37. T. J. Waybright, J. R. Britt, and T. G. McCloud, J. Biomol. Screen 14, 708 (2009). https://doi.org/10.1177/1087057109335670

    Article  CAS  PubMed  Google Scholar 

  38. M. Rabiei, A. Palevicius, A. Dashti, et al., Materials (Basel) 14, 2949 (2021). https://doi.org/10.3390/ma14112949

    Article  CAS  PubMed  Google Scholar 

  39. B. Himabindu, N. S. M. P. Latha Devi, and B. Rajini Kanth, Mater. Today: Proc. 47, 4891 (2021). https://doi.org/10.1016/j.matpr.2021.06.256

    Article  CAS  Google Scholar 

  40. M. P. Tirpude and N. T. Tayade, Preprint (2022). https://doi.org/10.21203/rs.3.rs-1586320/v1

  41. M. Assis, F. C. Groppo Filho, D. S. Pimentel, et al., Chem. Sel. 5, 4655 (2020). https://doi.org/10.1002/slct.202000502

    Article  CAS  Google Scholar 

  42. C. Nims, B. Cron, M. Wetherington, et al., Sci. Rep. 9, 7971 (2019). https://doi.org/10.1038/s41598-019-44353-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Republic of Kazakhstan, grant no. АР08855868. It was performed as part of State Task no. 122041400031-2 for the Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Kh. Urakaev or M. M. Burkitbayev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

APPENDIX

APPENDIX

Our supplementary information includes technical support for synthesizing the target products (nanosulfur and sulfur-containing silver halide nanocomposites (S/AgX)) via reactive mechanochemical recrystallization in small additions of a liquid (precursor solvent DMSO) using planetary ball mills. It also includes supporting data for studying the synthesized S/AgX samples via XRD analysis in combination with Williamson–Hall plots and Raman spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urakaev, F.K., Burkitbayev, M.M. Mechanosynthesis of Sulfur-Containing Silver Halide Nanocomposites in a Dimethyl Sulfoxide Medium. Russ. J. Phys. Chem. 97, 2231–2240 (2023). https://doi.org/10.1134/S0036024423100254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423100254

Keywords:

Navigation