Skip to main content
Log in

Effect of the Pore Structure of Nanosilicas Decorated with Cobalt and Cerium Oxides on Catalytic Activity in the Selective Oxidation of Carbon Monoxide

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Two types of nanosilicas with different pore structures are synthesized and decorated via impregnation with cobalt and cerium oxides. Meso–microporous spherical silica particles with thin walls of SiO2 nanochannels having specific surface area and pore volume of up to 1400 m2/g and 0.8 cm3/g, respectively, are used. Macroporous three-dimensionally ordered structures based on SiO2 (so-called synthetic opals) consisting of close-packed submicron spherical silica particles with respective porosity characteristics of 11 m2/g and 0.2 cm3/g are also used. The synthesized materials are characterized via low-temperature nitrogen adsorption, X-ray diffraction, SEM, XPS, and Fourier transform IR spectroscopy, and tested as catalysts for the selective oxidation of CO in excess H2 (CO-PROX). The effect of silica, the ratio of introduced oxides, and the order of their introduction on the structure and catalytic properties of Co–Ce/SiO2 are revealed. The catalytic behavior of the synthesized materials is determined from the specificity of interactions among the metal oxides and with the silica surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Farrando-Perez, C. Lopez, J. Silvestre-Albero, and F. Gallego-Gómez, J. Phys. Chem. 122, 22008 (2018). https://doi.org/10.1021/acs.jpcc.8b07278

    Article  CAS  Google Scholar 

  2. K. P. Meletov, V. S. Efimchenko, M. A. Korotkova, et al., Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2022.12.297

  3. Deepanjali K. Gautam, and A. V. Ullas, Mater. Today: Proc. 74, 713 (2023). https://doi.org/10.1016/j.matpr.2022.10.281

    Article  CAS  Google Scholar 

  4. A. Walcarius and L. Mercier, J. Mater. Chem. 20, 4478 (2010). https://doi.org/10.1039/B924316J

    Article  CAS  Google Scholar 

  5. T. Qiang and R. Zhu, Sci. Total Environ. 819, 152929 (2022). https://doi.org/10.1016/j.scitotenv.2022.152929

  6. Q. He and J. Shi, Adv. Mater. 26, 91 (2014). https://doi.org/10.1002/adma.201303123

    Article  CAS  Google Scholar 

  7. M. Gisbert-Garzarán, D. Lozano, K. Matsumoto, et al., ACS Appl. Mater. Interfaces 13, 9656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. S. Majeed, R. Nawaz, T. Rasheed, and M. Bilal, in Nanomaterials for Biocatalysis: Micro and Nano Technologies (Elsevier, Amsterdam, 2022), Chap. 6, p. 171.

    Google Scholar 

  9. S. Muñoz-Pina, P. Amorós, J. El Haskouri, et al., Nanomaterials 10, 1927 (2020). https://doi.org/10.3390/nano10101927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Kumar, D. G. Madden, M. Lusi, et al., Angew. Chem. Int. Ed. Engl. 54, 14372 (2015). https://doi.org/10.1002/anie.201506952

    Article  CAS  PubMed  Google Scholar 

  11. D. Zhao, Y. Wan, and W. Zhou, Ordered Mesoporous Materials (Wiley, New York, 2013), p. 523.

    Book  Google Scholar 

  12. R. Huirache-Acuña, R. Nava, C. L. Peza-Ledesma, et al., Materials 6, 4139 (2013). https://doi.org/10.3390/ma6094139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. Verma, Y. Kuwahara, K. Mori, et al., Nanoscale 12, 11333 (2020). https://doi.org/10.1039/D0NR00732C

    Article  CAS  PubMed  Google Scholar 

  14. P. C. Ribeiro, R. H. G. A. Kiminami, and A. C. F. M. Cos-ta, Ceramics 40, 2035 (2014). https://doi.org/10.1016/j.ceramint.2013.07.115

    Article  CAS  Google Scholar 

  15. Z. Xantini and E. Erasmus, Polyhedron 193, 114769 (2021). https://doi.org/10.1016/j.poly.2020.114769

  16. C. C. Chong, Y. W. Cheng, M. B. Bahari, et al., Int. J. Hydrogen Energy 46, 24687 (2021). https://doi.org/10.1016/j.ijhydene.2020.01.086

    Article  CAS  Google Scholar 

  17. Y. Liu, Z. Wang, W. Zhao, et al., Chem. Eng. J. 455, 140622 (2023). https://doi.org/10.1016/j.cej.2022.140622

  18. X. Jiang, X. Tang, L. Tang, et al., Ceramics 45, 7673 (2019). https://doi.org/10.1016/j.ceramint.2019.01.067

    Article  CAS  Google Scholar 

  19. D. A. Eurov, D. A. Kirilenko, M. V. Tomkovich, M. A. Yagovkina, and D. A. Kurdyukov, Inorg. Mater. 58, 1355 (2022). https://doi.org/10.1134/S002016852212007X

    Article  CAS  Google Scholar 

  20. D. A. Kurdyukov, A. B. Pevtsov, A. N. Smirnov, M. A. Yagovkina, V. Yu. Grigorev, V. V. Romanov, N. T. Bagraev, and V. G. Golubev, Phys. Solid State 58, 1216 (2016). https://doi.org/10.1134/S1063783416060275

    Article  CAS  Google Scholar 

  21. E. Yu. Trofimova, A. E. Aleksenskii, S. A. Grudinkin, I. V. Korkin, D. A. Kurdyukov, and V. G. Golubev, Colloid. J. 73, 546 (2011). https://doi.org/10.1134/S1061933X11040156

    Article  CAS  Google Scholar 

  22. D. A. Eurov, D. A. Kirilenko, M. V. Tomkovich, T. N. Rostovshchikova, M. I. Shilina, O. V. Udalova, and D. A. Kurdyukov, Inorg. Mater. 57, 906 (2021). https://doi.org/10.1134/S0020168521090053

    Article  CAS  Google Scholar 

  23. D. A. Eurov, T. N. Rostovshchikova, M. I. Shilina, et al., Appl. Surf. Sci. 579, 152121 (2022). https://doi.org/10.1016/j.apsusc.2021.152121

  24. H.-J. Freund, G. Meijer, M. Scheffler, et al., Angew. Chem. Int. Ed. 50, 10064 (2011). https://doi.org/10.1002/anie.201101378

    Article  CAS  Google Scholar 

  25. S. Royer and D. Duprez, ChemCatChem 3, 24 (2011). https://doi.org/10.1002/cctc.201000378

    Article  CAS  Google Scholar 

  26. P. Jing, X. Gong, B. Liu, and J. Zhang, Catal. Sci. Technol., No. 10, 919 (2020). https://doi.org/10.1039/C9CY02073J

  27. F. Marino, C. Descorme, and D. Duprez, Appl. Catal. B 58, 175 (2005). https://doi.org/10.1016/j.apcatb.2004.12.008

    Article  CAS  Google Scholar 

  28. A. Arango-Diaz, J. A. Cecilia, J. Marrero-Jerez, et al., Ceram. 46, 7462 (2016). https://doi.org/10.1016/j.ceramint.2016.01.151

    Article  CAS  Google Scholar 

  29. P. Gawade, B. Bayram, A.-M. C. Alexander, and U. S. Ozkan, Appl. Catal. B 128, 21 (2012). https://doi.org/10.1016/j.apcatb.2012.06.032

    Article  CAS  Google Scholar 

  30. L. Zhang, L. Zhang, G. Xu, et al., New J. Chem. 41, 13418 (2017). https://doi.org/10.1039/c7nj02542d

    Article  CAS  Google Scholar 

  31. M. Shilina, O. Udalova, I. Krotova, et al., ChemCatChem 12, 2556 (2020). https://doi.org/10.1002/cctc.201902063

    Article  CAS  Google Scholar 

  32. I. A. Ivanin, I. N. Krotova, O. V. Udalova, et al., Kinet. Catal. 62, 798 (2021). https://doi.org/10.1134/S0023158421060082

    Article  CAS  Google Scholar 

  33. I. Y. Kaplin, E. S. Lokteva, K. I. Maslakov, et al., Appl. Surf. Sci. 594, 153473 (2022). https://doi.org/10.1016/j.apsusc.2022.153473

  34. Yu. A. Teterin, A. V. Sobolev, A. A. Belik, Ya. S. Glazkova, K. I. Maslakov, V. G. Yarzhemskii, A. Yu. Teterin, K. E. Ivanov, and I. A. Presnyakov, J. Exp. Theor. Phys. 128, 899 (2019). https://doi.org/10.1134/S1063776119050066

    Article  CAS  Google Scholar 

  35. A. Medvedeva, E. Makhonina, L. Pechen, et al., Materials 15, 8225 (2022). https://doi.org/10.3390/ma15228225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. L. Qiao, H. Y. Xiao, H. M. Meyer, et al., J. Mater. Chem. C 1, 4628 (2013). https://doi.org/10.1039/C3TC30861H

    Article  CAS  Google Scholar 

  37. S. Gregg and K. Sing, Adsorption, Surface Area, and Porosity (Academic, London, 1982).

    Google Scholar 

  38. D. A. Kurdyukov, E. N. Chernova, Y. V. Russkikh, et al., J. Chromatogr. A 1513, 140 (2017). https://doi.org/10.1016/j.chroma.2017.07.043

    Article  CAS  PubMed  Google Scholar 

  39. D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, et al., Microporous Mesoporous Mater. 223, 225 (2016).https://doi.org/10.1016/j.micromeso.2015.11.018

    Article  CAS  Google Scholar 

  40. A. V. Kiselev and V. I. Lygin, Infrared Spectra of Surface Compounds and Adsorbed Molecules (Nauka, Moscow, 1972), p. 459 [in Russian].

    Google Scholar 

  41. Y.-Z. Wang, Y.-X. Zhao, C.-G. Gao, and D.-S. Liu, Catal. Lett. 116, 136 (2007). https://doi.org/10.1007/s10562-007-9099-4

    Article  CAS  Google Scholar 

  42. C.-W. Tang, C.-B. Wang, and S.-H. Chien, Termochim. Acta 473, 68 (2008). https://doi.org/10.1016/j.tca.2008.04.015

    Article  CAS  Google Scholar 

  43. X.-D. Hou, Y.-Z. Wang, and Y.-X. Zhao, Catal. Lett. 123, 321 (2008). https://doi.org/10.1007/s10562-008-9426-4

    Article  CAS  Google Scholar 

  44. L. Lukashuk, K. Föttinger, E. Kolar, et al., J. Catal. 344, 1 (2016). https://doi.org/10.1016/j.jcat.2016.09.002

    Article  CAS  Google Scholar 

  45. Chemistry of Graft Surface Compounds, Ed. by G. V. Lisichkin (Fizmatlit, Moscow, 2003), p. 49 [in Russian].

    Google Scholar 

  46. I. Puskas, T. H. Fleisch, J. B. Hall, et al., J. Catal. 134, 615 (1992). https://doi.org/10.1016/0021-9517(92)90347-K

    Article  CAS  Google Scholar 

  47. I. S. Tiscornia, A. M. Lacoste, L. E. Gomez, et al., Int. J. Hydrogen Energy 45, 6636 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.126

    Article  CAS  Google Scholar 

Download references

Funding

Synthesis and structural analysis of the materials were financed within the framework of the state budget agreement (Grant no. 0040-2019-0012). Spectral studies and catalytic tests were performed as part of a State Task for Lomonosov Moscow State University, topic no. АААА-А21-121011590090-7, and the Semenov Federal Research Center of Chemical Physics, topic no. 122040500058-1 “Physics and Chemistry of New Nanostructured Systems and Composite Materials with Desired Properties.” SEM and XPS data were obtained using equipment purchased under the Program for the Development of Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Rostovshchikova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This work did not include any experiments performed by the authors with human participants or animals.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostovshchikova, T.N., Eurov, D.A., Kurdyukov, D.A. et al. Effect of the Pore Structure of Nanosilicas Decorated with Cobalt and Cerium Oxides on Catalytic Activity in the Selective Oxidation of Carbon Monoxide. Russ. J. Phys. Chem. 97, 1978–1989 (2023). https://doi.org/10.1134/S0036024423090212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090212

Keywords:

Navigation