Skip to main content
Log in

Facile Fabrication of Nano-sized SiO2 by an Improved Sol–Gel Route: As an Adsorbent for Enhanced Removal of Cd(II) and Pb(II) Ions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

We herein report a direct and facil sol–gel method for the preparation of porous silicon dioxide nanoparticles using dissolved silica gel and nitric acid. We prepared SiO2 nanoparticles at three different pH values: 6, 7, and 8. The washed and dried products were calcined at 800 °C for 2 h. The average crystallite size of the prepared SiO2 nanoparticles was ca. 37.7 nm. The products were characterized by using FT-IR, TEM, FE-SEM, and XRD analyses. The as-prepared SiO2 nanoparticles showed high adsorption capacities; ca. 32.2 mg g−1 and 42.2 mg g−1, for the removal of Pb(II) and Cd(II) ions, respectively, from aqueous media. The adsorption data followed well the pseudo-second-order and Langmuir isotherm models. The determined thermodynamic parameters: ΔG° (from − 5.026 to − 5.180 kJ/mol for Cd(II) ion adsorption and from − 5.528 to − 5.732 kJ/mol for Pb(II) ion adsorption) and ΔH° (− 7.00 and − 7.607 kJ/mol, respectively), indicate the spontaneous, exothermic, and physisorption nature of the adsorption process. Besides, the excellent reusability and adsorption capacity for SiO2 nanoparticles revealed their good efficiency for the removal of Pb(II) and Cd(II) ions from aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Rajendran, T.A.K. Priya, K.S. Khoo, T.K.A. Hoang, H.-S. Ng, H.S.H. Munawaroh, C. Karaman, Y. Orooji, P.L. Show, A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere 287, 132369 (2022)

    CAS  PubMed  Google Scholar 

  2. Z. Yan, Q. Zhao, M. Wen, L. Hu, X. Zhang, J. You, A novel polydentate ligand chromophore for simultaneously colorimetric detection of trace Ag+ and Fe3+. Spectrochim. Acta A 186, 17–22 (2017)

    CAS  Google Scholar 

  3. N. Zohora, D. Kumar, M. Yazdani, V.M. Rotello, R. Ramanathan, V. Bansal, Rapid colorimetric detection of mercury using biosynthesized gold nanoparticles. Colloids Surf. A 532, 451–457 (2017)

    CAS  Google Scholar 

  4. Y. Guo, Y. Sun, Z. Li, S. Feng, R. Yang, L. Qu, Detection, detoxification, and removal of multiply heavy metal ions using a recyclable probe enabled by click and declick chemistry. J. Hazard. Mater. 423, 127242 (2022)

    CAS  PubMed  Google Scholar 

  5. M. Yap, N. Mubarak, J. Sahu, E. Abdullah, Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J. Ind. Eng. Chem. 45, 287–295 (2017)

    CAS  Google Scholar 

  6. L.K. Wang, H. Yung-Tse, N.K. Shammas, Physicochemical treatment processes (2005)

  7. M.Y. Nassar, M.F. El-Shahat, A. Osman, M.M. Sobeih, M.A. Zaid, Adsorptive removal of manganese ions from polluted aqueous media by glauconite clay-functionalized chitosan nanocomposites. J. Inorg. Organomet. Polym. Mater. 31, 4050–4064 (2021)

    CAS  Google Scholar 

  8. M.Y. Nassar, I.S. Ahmed, Template-free hydrothermal derived cobalt oxide nanopowders: synthesis, characterization, and removal of organic dyes. Mater. Res. Bull. 47, 2638–2645 (2012)

    CAS  Google Scholar 

  9. M.Y. Nassar, E.I. Ali, E.S. Zakaria, Tunable auto-combustion preparation of TiO2 nanostructures as efficient adsorbents for the removal of an anionic textile dye. RSC Adv. 7, 8034–8050 (2017)

    CAS  Google Scholar 

  10. Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang, Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 26, 289–300 (2018)

    Google Scholar 

  11. M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of heavy metals from acid mine drainage. Water Res. 36, 4757–4764 (2002)

    CAS  PubMed  Google Scholar 

  12. A. Bashir, L.A. Malik, S. Ahad, T. Manzoor, M.A. Bhat, G. Dar, A.H. Pandith, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 17, 729–754 (2019)

    CAS  Google Scholar 

  13. Q. Dong, X. Guo, X. Huang, L. Liu, R. Tallon, B. Taylor, J. Chen, Selective removal of lead ions through capacitive deionization: role of ion-exchange membrane. Chem. Eng. J. 361, 1535–1542 (2019)

    CAS  Google Scholar 

  14. F.S. Awad, K.M. AbouZied, W.M. Abou El-Maaty, A.M. El-Wakil, M.S. El-Shall, Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab. J. Chem. 13, 2659–2670 (2020)

    CAS  Google Scholar 

  15. M. Kargar, G. Zolfaghari, Hybrid nano-filtration and micro-filtration pilot processes for the removal of chromium from water. J. Water Wastewater (2018). https://doi.org/10.22093/wwj.2017.64518.2267

    Article  Google Scholar 

  16. Z.T. Khanzada, Phosphorus removal from landfill leachate by microalgae. Biotechnol. Rep. 25, e00419 (2020)

    Google Scholar 

  17. R. Chen, Y. Cheng, P. Wang, Y. Wang, Q. Wang, Z. Yang, C. Tang, S. Xiang, S. Luo, S. Huang, C. Su, Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem. Eng. J. 421, 129682 (2021)

    CAS  Google Scholar 

  18. X. Zhang, X. Sun, T. Lv, L. Weng, M. Chi, J. Shi, S. Zhang, Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci.: Mater. Electron. 31, 13344–13351 (2020)

    CAS  Google Scholar 

  19. N.C.L. de Beluci, G.A.P. Mateus, C.S. Miyashiro, N.C. Homem, R.G. Gomes, M.R. Fagundes-Klen, R. Bergamasco, A.M.S. Vieira, Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TiO2-modified membranes to improve the removal of reactive black 5 dye. Sci. Total Environ. 664, 222–229 (2019)

    CAS  PubMed  Google Scholar 

  20. P. Jia, Y. Zhou, X. Zhang, Y. Zhang, R. Dai, Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H2O2 pre-oxidation enhanced Fe(II) coagulation. Water Res. 131, 122–130 (2018)

    CAS  PubMed  Google Scholar 

  21. S. Zhang, S. Zhao, S. Huang, B. Hu, M. Wang, Z. Zhang, L. He, M. Du, Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-/sulfur-codoped mesoporous carbon. Chem. Eng. J. 420, 130516 (2021)

    CAS  Google Scholar 

  22. H. Liu, X.-X. Li, X.-Y. Liu, Z.-H. Ma, Z.-Y. Yin, W.-W. Yang, Y.-S. Yu, Schiff-base-rich g-CxN4 supported PdAg nanowires as an efficient Mott–Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 40, 808–816 (2021)

    CAS  Google Scholar 

  23. L. Bulgariu, D. Bulgariu, Functionalized soy waste biomass—a novel environmental-friendly biosorbent for the removal of heavy metals from aqueous solution. J. Clean. Prod. 197, 875–885 (2018)

    CAS  Google Scholar 

  24. X. Liang, X. Fan, R. Li, S. Li, S. Shen, D. Hu, Efficient removal of Cr(VI) from water by quaternized chitin/branched polyethylenimine biosorbent with hierarchical pore structure. Bioresour. Technol. 250, 178–184 (2018)

    CAS  PubMed  Google Scholar 

  25. D. Pradhan, L.B. Sukla, B.B. Mishra, N. Devi, Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J. Clean. Prod. 209, 617–629 (2019)

    CAS  Google Scholar 

  26. G. Wang, S. Zhang, P. Yao, Y. Chen, X. Xu, T. Li, G. Gong, Removal of Pb(II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab. J. Chem. 11, 99–110 (2018)

    CAS  Google Scholar 

  27. M.M. Sobeih, M.F. El-Shahat, A. Osman, M.A. Zaid, M.Y. Nassar, Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions. RSC Adv. 10, 25567–25585 (2020)

    CAS  Google Scholar 

  28. M.Y. Nassar, I.S. Ahmed, H.S. Hendy, A facile one-pot hydrothermal synthesis of hematite (α-Fe2O3) nanostructures and cephalexin antibiotic sorptive removal from polluted aqueous media. J. Mol. Liq. 271, 844–856 (2018)

    CAS  Google Scholar 

  29. M.Y. Nassar, M. Khatab, Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv. 6, 79688–79705 (2016)

    CAS  Google Scholar 

  30. M.Y. Nassar, I.S. Ahmed, M.A. Raya, A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. J. Mol. Liq. 282, 251–263 (2019)

    CAS  Google Scholar 

  31. H. Liu, W. Sha, A.T. Cooper, M. Fan, Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids Surf. A 347, 38–44 (2009)

    CAS  Google Scholar 

  32. S. Wan, H. Bi, L. Sun, Graphene and carbon-based nanomaterials as highly efficient adsorbents for oils and organic solvents. J. Nanotechnol. Rev. 5, 3–22 (2016)

    CAS  Google Scholar 

  33. R.N. Amador, M. Carboni, D. Meyer, Sorption and photodegradation under visible light irradiation of an organic pollutant by a heterogeneous UiO-67–Ru–Ti MOF obtained by post-synthetic exchange. J. RSC Adv. 7, 195–200 (2017)

    CAS  Google Scholar 

  34. G.-S. Kim, S.-H. Hyun, Synthesis of window glazing coated with silica aerogel films via ambient drying. J. Non-Cryst. Solids 320, 125–132 (2003)

    CAS  Google Scholar 

  35. W. Ackerman, M. Vlachos, S. Rouanet, J. Fruendt, Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J. Non-Cryst. Solids 285, 264–271 (2001)

    CAS  Google Scholar 

  36. T. Asefa, Z. Tao, Biocompatibility of mesoporous silica nanoparticles. Chem. Res. Toxicol. 25, 2265–2284 (2012)

    CAS  PubMed  Google Scholar 

  37. A.S. Abdel-Bary, D.A. Tolan, M.Y. Nassar, T. Taketsugu, A.M. El-Nahas, Chitosan, magnetite, silicon dioxide, and graphene oxide nanocomposites: synthesis, characterization, efficiency as cisplatin drug delivery, and DFT calculations. Int. J. Biol. Macromol. 154, 621–633 (2020)

    CAS  PubMed  Google Scholar 

  38. S. Bettini, R. Pagano, G. Bosco, S. Pal, C. Ingrosso, L. Valli, G. Giancane, SiO2 based nanocomposite for simultaneous magnetic removal and discrimination of small pollutants in water. Colloids Surf. A 633, 127905 (2022)

    CAS  Google Scholar 

  39. P. Feng, H. Chang, X. Liu, S. Ye, X. Shu, Q. Ran, The significance of dispersion of nano-SiO2 on early age hydration of cement pastes. Mater. Des. 186, 108320 (2020)

    CAS  Google Scholar 

  40. L. Giraldo, B. López, L. Pérez, S. Urrego, L. Sierra, M. Mesa, Mesoporous silica applications. Macromol. Symp. 258, 129–141 (2007)

    CAS  Google Scholar 

  41. M.M. Sobeih, M. El-Shahat, A. Osman, M. Zaid, M.Y. Nassar, Glauconite clay-functionalized chitosan nanocomposites for efficient adsorptive removal of fluoride ions from polluted aqueous solutions. RSC Adv. 10, 25567–25585 (2020)

    CAS  Google Scholar 

  42. J. Aguado, J.M. Arsuaga, A. Arencibia, Adsorption of aqueous mercury(II) on propylthiol-functionalized mesoporous silica obtained by cocondensation. Ind. Eng. Chem. Res. 44, 3665–3671 (2005)

    CAS  Google Scholar 

  43. J. Gallo, H. Pastore, U. Schuchardt, Silylation of [Nb]-MCM-41 as an efficient tool to improve epoxidation activity and selectivity. J. Catal. 243, 57–63 (2006)

    CAS  Google Scholar 

  44. R. Jenkins, R.L. Snyder, Introduction to X-Ray Powder Diffractometry (Wiley, New York, 1996)

    Google Scholar 

  45. M.Y. Nassar, M.M. Moustafa, M.M. Taha, Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal. RSC Adv. 6, 42180–42195 (2016)

    CAS  Google Scholar 

  46. M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, I. Samir, MgO nanostructure via a sol-gel combustion synthesis method using different fuels: an efficient nano-adsorbent for the removal of some anionic textile dyes. J. Mol. Liq. 225, 730–740 (2017)

    CAS  Google Scholar 

  47. M.P. Gatabi, H.M. Moghaddam, M. Ghorbani, Point of zero charge of maghemite decorated multiwalled carbon nanotubes fabricated by chemical precipitation method. J. Mol. Liq. 216, 117–125 (2016)

    Google Scholar 

  48. M.P. Gatabi, H.M. Moghaddam, M. Ghorbani, Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: equilibrium, kinetic, and thermodynamic study. J. Nanopart. Res. 18, 1–17 (2016)

    Google Scholar 

  49. Q. Wang, W. Gao, Y. Liu, J. Yuan, Z. Xu, Q. Zeng, Y. Li, M. Schröder, Simultaneous adsorption of Cu(II) and SO42 ions by a novel silica gel functionalized with a ditopic zwitterionic Schiff base ligand. Chem. Eng. J. 250, 55–65 (2014)

    CAS  Google Scholar 

  50. M. Ghaedi, H. Mazaheri, S. Khodadoust, S. Hajati, M. Purkait, Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochim. Acta A 135, 479–490 (2015)

    CAS  Google Scholar 

  51. Y.-S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999)

    CAS  Google Scholar 

  52. Y.-Y. Wang, Y.-X. Liu, H.-H. Lu, R.-Q. Yang, S.-M. Yang, Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J. Solid State Chem. 261, 53–61 (2018)

    CAS  Google Scholar 

  53. G.D. Halsey, The role of surface heterogeneity in adsorption, in Advances in Catalysis. ed. by V.I.K.W.G. Frankenburg, E.K. Rideal (Academic Press, Cambridge, 1952), pp. 259–269

    Google Scholar 

  54. S. Liu, Y. Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, Q. Li, B. Huang, Z. Huang, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide. Chem. Eng. J. 248, 135–144 (2014)

    CAS  Google Scholar 

  55. X. Zhang, S. Lin, X.-Q. Lu, Z.-L. Chen, Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem. Eng. J. 163, 243–248 (2010)

    CAS  Google Scholar 

  56. H. Ravishankar, J. Wang, L. Shu, V. Jegatheesan, Removal of Pb(II) ions using polymer based graphene oxide magnetic nano-sorbent. Process Saf. Environ. Prot. 104, 472–480 (2016)

    CAS  Google Scholar 

  57. N.K. Koju, X. Song, Q. Wang, Z. Hu, C. Colombo, Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms. J. Enivron. Pollut. 240, 255–266 (2018)

    CAS  Google Scholar 

  58. G. Bhanjana, N. Dilbaghi, K.-H. Kim, S. Kumar, Carbon nanotubes as sorbent material for removal of cadmium. J. Mol. Liq. 242, 966–970 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The second author (Mohamed S. Behiry) thanks A.A. Ali, Benha University, Egypt, for providing him some commercial chemicals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alaa S. Amin or Mostafa Y. Nassar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent is not applicable to this study.

Research Involving Human and/or Animal Participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Feky, H.H., Behiry, M.S., Amin, A.S. et al. Facile Fabrication of Nano-sized SiO2 by an Improved Sol–Gel Route: As an Adsorbent for Enhanced Removal of Cd(II) and Pb(II) Ions. J Inorg Organomet Polym 32, 1129–1141 (2022). https://doi.org/10.1007/s10904-021-02214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02214-8

Keywords

Navigation