Skip to main content
Log in

Porous Silica Particles Modified in a NH3 + H2O + H2O2 Mixture: Structure, Filling with Cobalt Oxide, and Catalytic Activity for CO Conversion

  • Published:
Inorganic Materials Aims and scope

Abstract—

Silica particles containing large mesopores (5–25 nm in size) and micropores (0.6–2 nm in size) have been prepared by chemical etching of spherical micro- and mesoporous silica particles in an ammonia + water + hydrogen peroxide mixture. The specific surface area and pore volume of the particles are 510 m2/g and 0.8 cm3/g, respectively. Using capillary impregnation, we have synthesized Co3O4 (2–4 wt %) in pores of the particles. The composition and structure of the resultant materials have been studied. The Co3O4/SiO2 composite particles have been shown to be stable and exhibit catalytic activity for the CO oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Verma, P., Kuwahara, Y., Mori, K., Raja, R., and Yamashita, H., Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications, Nanoscale, 2020, vol. 12, pp. 11333–11363.https://doi.org/10.1039/D0NR00732C

    Article  CAS  PubMed  Google Scholar 

  2. Ramasamy, D.L., Puhakka, V., Iftekhar, S., Wojtuś, A., Repo, E., Ben Hammouda, S., Iakovleva, E., and Sillanpää, M., N- and O-ligand doped mesoporous silica-chitosan hybrid beads for the efficient, sustainable and selective recovery of rare earth elements (REE) from acid mine drainage (AMD): understanding the significance of physical modification and conditioning of the polymer, J. Hazard. Mater., 2018, vol. 348, pp. 84–91.https://doi.org/10.1016/j.jhazmat.2018.01.030

    Article  CAS  PubMed  Google Scholar 

  3. Yang, J., Lin, G.-S., Mou, C.-Y., and Tung, K.-L., Mesoporous silica thin membrane with tunable pore size for ultrahigh permeation and precise molecular separation, ACS Appl. Mater. Interfaces, 2020, vol. 12, pp. 7459–7465.https://doi.org/10.1021/acsami.9b21042

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., Che, E., Hu, L., Zhang, Q., Jiang, T., and Wang, S., Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomed.: NBM, 2015, vol. 11, pp. 313–327.https://doi.org/10.1016/j.nano.2014.09.014

    Article  CAS  Google Scholar 

  5. Eurov, D.A., Kurdyukov, D.A., Medvedev, A.V., Kirilenko, D.A., Tomkovich, M.V., and Golubev, V.G., Micro-mesoporous submicron silica particles with pore size tunable in a wide range: synthesis, properties and prospects for LED manufacturing, Nanotechnology, 2021, vol. 32, paper 215604.https://doi.org/10.1088/1361-6528/abe66e

  6. Unger, K.K., Kumar, D., Grun, M., Buchel, G., Ludtke, S., Adam, Th., Schumacher, K., and Renker, S., Synthesis of spherical porous silicas in the micron and submicronsize range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations, J. Chromatogr., A, 2000, vol. 892, pp. 47–55.https://doi.org/10.1016/s0021-9673(00)00177-1

    Article  CAS  Google Scholar 

  7. Asefa, T. and Tao, Z., Biocompatibility of mesoporous silica nanoparticles, Chem. Res. Toxicol., 2012, vol. 25, pp. 2265–2284.https://doi.org/10.1021/tx300166u /

  8. Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., and Lin, V.S.-Y., Mesoporous silica nanoparticles for intracellular controlled drug delivery, Small, 2010, vol. 6, pp. 1952–1967.https://doi.org/10.1002/smll.200901789

    Article  CAS  PubMed  Google Scholar 

  9. Horcajada, P., Rámila, A., Pérez-Pariente, J., and Vallet-Regi, M., Influence of pore size of MCM-41 matrices on drug delivery rate, Microporous Mesoporous Mater., 2004, vol. 68, pp. 105–109.https://doi.org/10.1016/j.micromeso.2003.12.012

    Article  CAS  Google Scholar 

  10. Unger, K.K., Skudas, R., and Schulte, M.M., Particle packed columns and monolithic columns in high-performance liquid chromatography—comparison and critical appraisal, J. Chromatogr., A, 2008, vol. 1184, pp. 393–415.https://doi.org/10.1016/j.chroma.2007.11.118

    Article  CAS  Google Scholar 

  11. Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, T.W.C., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., and Schlenker, J.L., A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 1992, vol. 114, pp. 10834–10843.https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  12. Jana, S.K., Mochizuki, A., and Namba, S., Progress in pore-size control of mesoporous MCM-41 molecular sieve using surfactant having different alkyl chain lengths and various organic auxiliary chemicals, Catal. Surv., 2004, vol. 8, pp. 1–13.https://doi.org/10.1023/B:CATS.0000015110.85694.d9

    Article  CAS  Google Scholar 

  13. Knežević, N.Ž. and Durand, J.-O., Large pore mesoporous silica nanomaterials for application in delivery of biomolecules, Nanoscale, 2015, vol. 7, pp. 2199–2209.https://doi.org/10.1039/C4NR06114D

    Article  CAS  PubMed  Google Scholar 

  14. Stovpiaga, E.Yu., Grudinkin, S.A., Kurdyukov, D.A., Kukushkina, Yu.A., Nashchekin, A.V., Sokolov, V.V., Yakovlev, D.R., and Golubev, V.G., Monodisperse spherical meso–macroporous silica particles: synthesis and adsorption of biological macromolecules, Phys. Solid State, 2016, vol. 58, no. 11, pp. 2339–2344.https://doi.org/10.1134/S1063783416110342

    Article  CAS  Google Scholar 

  15. Royer, S. and Duprez, D., Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem, 2011, vol. 3, pp. 24–65.https://doi.org/10.1002/cctc.201000378

    Article  CAS  Google Scholar 

  16. Kurdyukov, D.A., Eurov, D.A., Kirilenko, D.A., Kukushkina, J.A., Sokolov, V.V., Yagovkina, M.A., and Golubev, V.G., High-surface area spherical micro-mesoporous silica particles, Microporous Mesoporous Mater., 2016, vol. 223, pp. 225–229.https://doi.org/10.1016/j.micromeso.2015.11.018

    Article  CAS  Google Scholar 

  17. Kurdyukov, D.A., Eurov, D.A., Sokolov, V.V., and Golubev, V.G., Tailoring the size and microporosity of Stöber silica particles, Microporous Mesoporous Mater., 2018, vol. 258, pp. 205–210.https://doi.org/10.1016/j.micromeso.2017.09.017

    Article  CAS  Google Scholar 

  18. Żegliński, J., Piotrowski, G.P., and Piękoś, R., A study of interaction between hydrogen peroxide and silica gel by FTIR spectroscopy and quantum chemistry, J. Mol. Struct., 2006, vol. 794, pp. 83–91.https://doi.org/10.1016/j.molstruc.2006.01.043

    Article  CAS  Google Scholar 

  19. Zhang, L., Dong, L., Yu, W., Liu, L., Deng, Y., Liu, B., Wan, H., Gao, F., Sun, K., and Dong, L., Effect of cobalt precursors on the dispersion, reduction, and CO oxidation of CoOx/γ-Al2O3 catalysts calcined in N2, J. Colloid Interface Sci., 2021, vol. 355, pp. 464–471.https://doi.org/10.1016/j.jcis.2010.11.076

    Article  CAS  Google Scholar 

  20. Hattori, M., Nakakura, S., Katsui, H., Goto, T., and Ozawa, M., High CO reactivity of cobalt oxide catalyst deposited on alumina powders by rotary chemical vapor deposition, Mater. Lett., 2021, vol. 284, paper 128922.https://doi.org/10.1016/j.matlet.2020.128922/

  21. Hassan, H.M.A., Betiha, M.A., Elshaarawy, R.F. M., and Samy El-Shall, M., Promotion effect of palladium on Co3O4 incorporated within mesoporous MCM-41 silica for CO oxidation, Appl. Surf. Sci., 2017, vol. 402, pp. 99–107.https://doi.org/10.1016/j.apsusc.2017.01.061

    Article  CAS  Google Scholar 

  22. Shilina, M.I., Rostovshchikova, T.N., Nikolaev, S.A., and Udalova, O.V., Polynuclear Co-oxo cations in the catalytic oxidation of CO on Co-modified ZSM-5 zeolites, Mater. Chem. Phys., 2019, vol. 223, pp. 287–298.https://doi.org/10.1016/j.matchemphys.2018.11.005

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In our transmission electron microscopy work, we used equipment at the Materials Engineering and Diagnosis in Advanced Technologies Federal Shared Research Facilities Center.

Funding

The synthesis and physicochemical characterization of the materials were supported by the Russian Federation Ministry of Science and Higher Education s part of the state research target no. 0040-2019-0012. The catalytic tests were supported through state research targets, theme nos. AAAA-A21-121011590090-7 and 0082-2019-0011: Fundamental relationships in heterogeneous and homogeneous catalysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Eurov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eurov, D.A., Kirilenko, D.A., Tomkovich, M.V. et al. Porous Silica Particles Modified in a NH3 + H2O + H2O2 Mixture: Structure, Filling with Cobalt Oxide, and Catalytic Activity for CO Conversion. Inorg Mater 57, 906–912 (2021). https://doi.org/10.1134/S0020168521090053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521090053

Keywords:

Navigation